
WindSE Documentation
Release 2022.10.0_dev

Ryan King, Jeffery Allen, Ethan Young

Oct 09, 2022

Contents:

1 Installation 1

2 Running WindSE 3

3 The Parameter File 5

4 Demos 29

5 Studies 37

6 WindSE API 45

7 Indices and tables 49

Python Module Index 51

Index 53

i

ii

CHAPTER 1

Installation

It is easies to run WindSE within a conda environment. To install conda check this link: Conda Installation. Addi-
tionally, WindSE has been tested on MacOS Catalina (10.15), but in theory should also run on linux. Windows is not
recommended.

1.1 Source Conda Installation (Script):

The easiest way to install windse is to run:

sh install.sh <enviroment_name>

Then the enviroment can be activated using:

conda activate <enviroment_name>

1.2 Source Conda Installation (Manual):

If you want to use the latest version or just want to setup the environment manually, follow these steps. After conda is
installed, create a new environment using:

conda create --name <enviroment_name>

You can replace the name <enviroment_name> with a different name for the environment if you want. Next we activate
the environment using:

conda activate <enviroment_name>

or whatever you named your environment. Now we need to install the dependent packages using:

conda install -c conda-forge fenics=2019.1.0=py38_9 dolfin-adjoint matplotlib scipy=1.
→˓4.1 slepc mshr hdf5 pyyaml memory_profiler pytest pytest-cov pytest-mpi coveralls

1

https://conda.io/projects/conda/en/latest/user-guide/install/

WindSE Documentation, Release 2022.10.0_dev

Next, we need to install the tsfc form compilers::

pip install git+https://github.com/blechta/tsfc.git@2018.1.0
pip install git+https://github.com/blechta/COFFEE.git@2018.1.0
pip install git+https://github.com/blechta/FInAT.git@2018.1.0
pip install git+https://github.com/mdolab/pyoptsparse@v1.0
pip install singledispatch networkx pulp openmdao

Finally, download/clone the WindSE repo and run:

pip install -e .

in the root folder.

2 Chapter 1. Installation

https://fenics.readthedocs.io/projects/ffc/en/latest/installation.html

CHAPTER 2

Running WindSE

To run WindSE, first create a parameters file (as described in The Parameter File and demonstrated in Demos). Then
activate the conda environment using:

source activate <enviroment_name>

where the <enviroment_name> is what was defined in the install process then run:

windse run <params file>

where <params files> is the path of the parameters file you wish to run. By default windse searches for “params.txt”
in the current directory if no file is supplied.

Sit back and let the magic happen. Additionally, you can run:

windse run <params file> -p group:option:value

where group:option:value is a single unbroken string and the group is the group in the params file, the option
is the specific option in that group and the value is the new value. This allows for overriding parameters in the yaml
file via the terminal. For example: wind_farm:HH:140 will change the hub height of all turbines in a “grid” or
“random” farm to 140 m regardless of what was defined in the params.yaml file.

3

WindSE Documentation, Release 2022.10.0_dev

4 Chapter 2. Running WindSE

CHAPTER 3

The Parameter File

This is a comprehensive list of all the available parameters. The default values are stored within
default_parameters.yaml located in the windse directory of the python source files.

• Adding a New Parameter

• General Options

• Domain Options

• Wind Farm Options

• Turbine Options

• Refinement Options

• Function Space Options

• Boundary Condition Options

• Problem Options

• Solver Options

• Optimization Options

3.1 Adding a New Parameter

To add a new parameter, first add an entry in the default_parameters.yaml file under one of the major sec-
tions with a unique name. The value of that entry will then be an attribute of the class associated with that section.
For example: adding the entry test_param: 42 under the wind_farm section will add the attribute self.
test_param to the GenericWindFarm class with the default value of 42.

5

WindSE Documentation, Release 2022.10.0_dev

3.2 General Options

This section is for options about the run itself. The basic format is:

general:
name: <str>
preappend_datetime: <bool>
output: <str list>
output_folder: <str>
output_type: <str>
dolfin_adjoint: <bool>
debug_mode: <bool>

Option Description Required Default
name Name of the run and the

folder in output/.
no “Test”

preappend_datetime Append the date to the
output folder name.

no False

output

Determines which
functions to save.
Select any combination of
the following:

“mesh”,
“initial_guess”,
“height”,
“turbine_force”,
“solution”, “debug”

no [“solution”]

output_folder The folder location for all
the output

no “output/”

output_type Output format: “pvd” or
“xdmf”.

no “pvd”

dolfin_adjoint Required if performing
any optimization.

no False

debug_mode Saves
“tagged_output.yaml”
full of debug data

no False

3.3 Domain Options

This section will define all the parameters for the domain:

domain:
type: <str>
path: <str>
mesh_path: <str>
terrain_path: <str>
bound_path: <str>
filetype: <str>

(continues on next page)

6 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

(continued from previous page)

scaled: <bool>
ground_reference: <float>
streamwise_periodic: <bool>
spanwise_periodic: <bool>
x_range: <float list>
y_range: <float list>
z_range: <float list>
nx: <int>
ny: <int>
nz: <int>
mesh_type: <str>
center: <float list>
radius: <float>
nt: <int>
res: <int>
interpolated: <bool>
analytic: <bool>
gaussian:

center: <float list>
theta: <float>
amp: <float>
sigma_x: <float>
sigma_y: <float>

plane:
intercept: <float list>
mx: <float>
my: <float>

3.3. Domain Options 7

WindSE Documentation, Release 2022.10.0_dev

Option Description Required (for) Default Units
type

Sets the
shape/dimension of
the mesh.
Choices:

“rectangle”,
“box”,
“cylinder”,
“circle”
“imported”,
“interpo-
lated”

yes None -

path Folder of the mesh
data to import

yes or *_path
“imported”

*_path -

mesh_path

Location of specific
mesh file
Default file name:
“mesh”

no
“imported”

path -

terrain_path

Location of specific
terrain file
Default file name:
“terrain.txt”
Note: Only file
required by
“interpolated”

no
“imported”

path -

bound_path

Location of specific
boundary marker
data
Default file name:
“boundaries”

no
“imported”

path -

filetype file type for im-
ported mesh:
“xml.gz”, “h5”

no
“imported”

“xml.gz” -

scaled

Scales the domain
to km instead of m.
WARNING:
extremely
experimental!

no False -

ground_reference

The height (z
coordinate) that is
considered ground

no 0.0 m

streamwise_periodic

Sets periodic
boundary condition
in the x
direction (NOT
FULLY
IMPLEMENTED)

no False -

spanwise_periodic

Sets periodic
boundary condition
in the y
direction (NOT
FULLY
IMPLEMENTED)

no False -

x_range List of two floats
defining the x range

“rectangle”
“box”

None m

y_range List of two floats
defining the y range

“rectangle”
“box”

None m

z_range List of two floats
defining the z range

“box”
“cylinder”

None m

nx The number of
nodes in the x
direction “rectangle”

“box”

None -

ny The number of
nodes in the x
direction “rectangle”

“box”

None -

nz The number of
nodes in the x
direction “box”

“cylinder”

None -

mesh_type

The meshing type
when generating a
cylindric domain.
Choices:

“mshr”,
“elliptic”,
“squircular”,
“stretch”

Note: nz doesn’t
work with “mshr”

“cylinder”
“circle”

“mshr” -

center A 2D list indicat-
ing the center of the
base “cylinder”

“circle”

None m

radius The radius of the
cylinder

“cylinder”
“circle”

None m

nt

The number of
radial segments to
approximate the
cylinder

“cylinder”
“circle”

None -

res

The resolution of
the mesh. It should
be
less than nt.
Note: res only
works with “mshr”

“cylinder”
“circle”

None -

interpolated

Indicate if the
topography is
interpolated
from file or
function.

no
“box”
“cylinder”

False -

analytic

Indicates if the
interpolated
function is
analytic or from
file.

no False -

8 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

gaussian

If analytic is true, a
Gaussian hill will
be created using the
following
parameters.
Note: requires
interpolated and
analytic.

“interpolated”
“analytic”

None -

center The center point of
the gaussian hill.

no [0.0,0.0] m

amp The amplitude of
the hill.

yes None m

sigma_x The extent of the hill
in the x direction.

yes None m

sigma_y The extent of the hill
in the y direction.

yes None m

theta The rotation of the
hill.

no 0.0 rad

plane

If analytic is true,
the ground will be
represented as a
plane
Note: requires
interpolated and
analytic.

“interpolated”
“analytic”

None -

intercept The equation of a
plane intercept

no [0.0,0.0,0.0] m

mx The slope in the x
direction

yes None m

my The slope in the y
direction

yes None m

To import a domain, three files are required:

• mesh.xml.gz - this contains the mesh in a format dolfin can handle

• boundaries.xml.gz - this contains the facet markers that define where the boundaries are

• topology.txt - this contains the data for the ground topology.

The topology file assumes that the coordinates are from a uniform mesh. It contains three column: x, y, z. The x and
y columns contain just the unique values. The z column contains the ground values for every combination of x and y.
The first row must be the number of points in the x and y direction. Here is an example for z=x+y/10:

3 3 9
0 0 0.0
1 1 0.1

(continues on next page)

3.3. Domain Options 9

WindSE Documentation, Release 2022.10.0_dev

(continued from previous page)

2 2 0.2
1.0
1.1
1.2
2.0
2.1
2.2

Note: If using “h5” file format, the mesh and boundary will be in one file.

3.4 Wind Farm Options

This section will define all the parameters for the wind farm:

wind_farm:
type: <str>
path: <str>
display: <str>
ex_x: <float list>
ex_y: <float list>
x_spacing: <float>
y_spacing: <float>
x_shear: <float>
y_shear: <float>
min_sep_dist: <float>
grid_rows: <int>
grid_cols: <int>
jitter: <float>
numturbs: <int>
seed: <int>

10 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

Option Description Required (for) Default Units
type

Sets the type of
farm. Choices:

“grid”,
“random”,
“imported”,
“empty”

yes None -

path Location of the
wind farm csv file

“imported” None -

display

Displays a plot of
the wind farm

no False -

ex_x

The x extents of the
farm where turbines
can be placed

“grid”
“random”

None m

ex_y

The y extents of the
farm where turbines
can be placed

“grid”
“random”

None m

x_spacing

Alternative method
for defining grid
farm
x distance between
turbines

“grid” None m

y_spacing

Alternative method
for defining grid
farm
y distance between
turbines

“grid” None m

x_shear

Alternative method
for defining grid
farm
offset in the x
direction between
rows

no
“grid”

None m

y_shear

Alternative method
for defining grid
farm
offset in the y
direction between
columns

no
“grid”

None m

min_sep_dist

Minimum distance
between any two
turbines
in a random farm

no
“random”

2 RD

grid_rows The number of tur-
bines in the x direc-
tion

“grid” None -

grid_cols The number of tur-
bines in the y direc-
tion

“grid” None -

jitter

Displaces turbines
in a random
direction
by this amount

no
“grid”

0.0 m

numturbs The total number of
turbines

“random” None -

seed

The random seed
used to
generate/jitter the
farm. Useful for
repeating random
runs

no
“random”

None -

3.4. Wind Farm Options 11

WindSE Documentation, Release 2022.10.0_dev

To import a wind farm, set the path to a .csv file containing the per turbine information. In the .csv file, each column
specifies a turbine property and each row is a unique turbine. At minimum, the locations for each turbine must be
specified. Here is a small two turbine example:

x, y
200.00, 0.0000
800.00, 0.0000

Additional turbine properties can be set by adding a column with a header equal to the yaml parameter found in the
“Turbine Options” section. Here is an example of a two turbine farm with additional properties set:

x, y, HH, yaw, RD, thickness, axial
0.0, -325.0, 110.0, 0.5236, 130.0, 13.0, 0.33
0.0, 325.0, 110.0, -0.5236, 130.0, 13.0, 0.33

The columns can be in any order and white space is ignored. If a property is set in both the yaml and the imported
.csv, the value in the .csv will be used and a warning will be displayed.

3.5 Turbine Options

This section will define all the parameters for the wind farm:

turbines:
type: <str>
HH: <float>
RD: <float>
thickness: <float>
yaw: <float>
axial: <float>
force: <str>
rpm: <float>
read_turb_data: <str>
blade_segments: <int or str>
use_local_velocity: <bool>
max_chord: <float>
chord_factor: <float>
gauss_factor: <float>

12 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

Option Description Required (for) Default Units
type

Sets the type of
farm. Choices:
“disk” - actuator
disk representation
using

the FEniCS
backend

“2D_disk” -
actuator disk
representation

optimized for
2D
simulations

“numpy_disk” -
actuator disk
representation

that uses
numpy arrays

“line” - actuator line
representation best

used with the
unsteady
solver

yes None -

HH The hub height of
the turbine from
ground

all None m

RD The rotor diameter all None m
yaw

Determines the yaw
of all turbines. Yaw
is
relative to the wind
inflow direction

all None rad

thickness The effective thick-
ness of the rotor
disk “disk” or disk

variant

None m

axial The axial induction
factor

“disk” or disk
variant

None -

force

the radial
distribution of force
Choices: “sine”,
“constant”

no
“disk”

“sine” -

rpm

sets the revolutions
per minute if using
the alm turbine
method

“line” 10.0 rev/min

read_turb_data

Path to .csv file with
chord, lift, and
drag coefficients

no
“line”

None -

blade_segments

number of nodes
along the rotor
radius
use “computed” to
automatically set

“line” “computed” -

use_local_velocity

use the velocity at
the rotor to compute
alm forces
(otherwise use
inflow)

“line” True -

max_chord upper limit when
optimizing chord

“line” 1000 m

chord_factor

multiplies all the
chords by a constant
factor

“line” 1.0 -

gauss_factor

factor that gets
multiplied by the
minimum
mesh spacing to set
the gaussian width

“line” 2.0 -

3.5. Turbine Options 13

WindSE Documentation, Release 2022.10.0_dev

See “Wind Farm Options” for how to specify turbine properties individually for each turbine.

3.6 Refinement Options

This section describes the options for refinement The domain created with the previous options can be refined in
special ways to maximize the efficiency of the number DOFs. None of these options are required. There are three
types of mesh manipulation: warp, farm refine, turbine refine. Warp shifts more cell towards the ground, refining the
farm refines within the farm extents, and refining the turbines refines within the rotor diameter of a turbine. When
choosing to warp, a “smooth” warp will shift the cells smoothly towards the ground based on the strength. A “split”
warp will attempt to create two regions, a high density region near the ground and a low density region near the top

The options are:

refine:
warp_type: <str>
warp_strength: <float>
warp_percent: <float>
warp_height: <float>
farm_num: <int>
farm_type: <str>
farm_factor: <float>
turbine_num: <int>
turbine_type: <str>
turbine_factor: <float>
refine_custom: <list list>
refine_power_calc: <bool>

14 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

Option Description
warp_type

Choose to warp the mesh to place more cells
near the ground. Choices:

“smooth”, “split”

warp_strength

The higher the strength the more cells
moved towards the ground. Requires: “smooth”

warp_percent

The percent of the cell moved below the
warp height. Requires: “split”

warp_height

The height the cell are moved below
Requires: “split”

farm_num Number of farm refinements
farm_type

The shape of the refinement around the farm
Choices:
“full” - refines the full mesh
“box” - refines in a box near the farm
“cylinder” - cylinder centered at the farm
“stream” - stream-wise cylinder around farm

(use for 1 row farms)

farm_factor

A scaling factor to make the refinement
area larger or smaller

turbine_num Number of turbine refinements
turbine_type

The shape of the refinement around turbines
Choices:
“simple” - cylinder around turbine
“tear” - tear drop shape around turbine
“wake” - cylinder to capture wake

turbine_factor

A scaling factor to make the refinement
area larger or smaller

refine_custom

This is a way to define multiple refinements
in a specific order allowing for more
complex refinement options. Example below

refine_power_calc

bare minimum refinement around turbines to
increase power calculation accuracy

3.6. Refinement Options 15

WindSE Documentation, Release 2022.10.0_dev

To use the “refine_custom” option, define a list of lists where each element defines refinement based on a list of
parameters. Example:

refine_custom: [
["full", []],
["full", []],
["box", [[[-500,500],[-500,500],[0,150]]]],
["cylinder", [[0,0,0], 750, 150]],
["simple", [100]],
["tear", [50, 0.7853]]

]

For each refinement, the first option indicates how many time this specific refinement will happen. The second option
indicates the type of refinement: “full”, “square”, “circle”, “farm_circle”, “custom”. The last option indicates the
extent of the refinement.

The example up above will result in five refinements:

1. Two full refinements

2. One box refinement bounded by: [[-500,500],[-500,500],[0,150]]

3. One cylinder centered at origin with radius 750 m and a height of 150 m

4. One simple turbine refinement with radius 100 m

5. One teardrop shaped turbine refinement radius 500 m and rotated by 0.7853 rad

The syntax for each refinement type is:

["full", []]
["box", [[[x_min,x_max],[y_min,y_max],[z_min,z_max]], expand_factor]]
["cylinder", [[c_x,c_y,c_z], radius, height, expand_factor]]
["stream", [[c_x,c_y,c_z], radius, length, theta, offset, expand_factor]]
["simple", [radius, expand_factor]]
["tear", [radius, theta, expand_factor]]
["wake", [radius, length, theta, expand_factor]]

Note:

• For cylinder, the center is the base of the cylinder

• For stream, the center is the start of the vertical base and offset indicates the rotation offset

• For stream, wake, length is the distance center to the downstream end of the cylinder

• For stream, tear, wake, theta rotates the shape around the center

3.7 Function Space Options

This section list the function space options:

function_space:
type: <str>
quadrature_degree: <int>
turbine_space: <str>
turbine_degree: <int>

16 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

Option Description Required Default
type

Sets the type of farm.
Choices:

“linear”: P1
elements for both
velocity and
pressure
“taylor_hood”: P2
for velocity, P1 for
pressure

yes None

quadrature_degree

Sets the quadrature
degree for all integration
and
interpolation for the
whole simulation

no 6

turbine_space

Sets the function space
for the turbine. Only
needed
if using “numpy” for
turbine_method

Choices: “Quadrature”,
“CG”

no Quadrature

turbine_degree

The quadrature degree for
specifically the turbine
force representation.
Only works “numpy”
method
Note: if using Quadrature
space, this value must
equal
the
quadrature_degree

no 6

3.8 Boundary Condition Options

This section describes the boundary condition options. There are three types of boundary conditions: inflow, no slip,
no stress. By default, inflow is prescribed on boundary facing into the wind, no slip on the ground and no stress on all
other faces. These options describe the inflow boundary velocity profile.

3.8. Boundary Condition Options 17

WindSE Documentation, Release 2022.10.0_dev

boundary_conditions:
vel_profile: <str>
HH_vel: <float>
vel_height: <float, str>
power: <float>
k: <float>
turbsim_path <str>
inflow_angle: <float, list>
boundary_names:

east: <int>
north: <int>
west: <int>
south: <int>
bottom: <int>
top: <int>
inflow: <int>
outflow: <int>

boundary_types:
inflow: <str list>
no_slip: <str list>
free_slip: <str list>
no_stress: <str list>

18 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

Option Description Required Default
vel_profile

Sets the velocity profile.
Choices:

“uniform”:
constant velocity of
𝑢𝐻𝐻

“power”: a power
profile
“log”: log layer
profile
“turbsim”: use a
turbsim simulation
as inflow

yes None

HH_vel The velocity at hub
height, 𝑢𝐻𝐻 , in m/s.

no 8.0

vel_height sets the location of the
reference velocity. Use
“HH” for hub height

no “HH”

power The power used in the
power flow law

no 0.25

k The constant used in the
log layer flow

no 0.4

inflow_angle

Sets the initial inflow
angle for the boundary
condition. A multiangle
solve can be
indicated by setting this
value to a list with values:
[start, stop, n] where the
solver
will perform n solves,
sweeping uniformly
through the start and stop
angles. The number of
solves, n, can also be
defined in the solver
parameters.

no None

turbsim_path The location of turbsim
profiles used as inflow
boundary conditions

yes
“turbsim”

None

boundary_names A dictionary used to iden-
tify the boundaries

no See Below

boundary_types A dictionary for defining
boundary conditions

no See Below

3.8. Boundary Condition Options 19

WindSE Documentation, Release 2022.10.0_dev

If you are importing a mesh or want more control over boundary conditions, you can specify the boundary markers
using names and types. The default for these two are

Rectangular Mesh:

boundary_condition:
boundary_names:

east: 1
north: 2
west: 3
south: 4

boundary_types:
inflow: ["west","north","south"]
no_stress: ["east"]

Box Mesh:

boundary_condition:
boundary_names:

east: 1
north: 2
west: 3
south: 4
bottom: 5
top: 6

boundary_types:
inflow: ["west","north","south"]
free_slip: ["top"]
no_slip: ["bottom"]
no_stress: ["east"]

Circle Mesh:

boundary_condition:
boundary_names:

outflow: 7
inflow: 8

boundary_types:
inflow: ["inflow"]
no_stress: ["outflow"]

Cylinder Mesh:

boundary_condition:
boundary_names:

outflow: 5
inflow: 6
bottom: 7
top: 8

boundary_types:
inflow: ["inflow"]
free_slip: ["top"]
no_slip: ["bottom"]
no_stress: ["outflow"]

These defaults correspond to an inflow wind direction from West to East.

When marking a rectangular/box domains, from a top-down perspective, start from the boundary in the positive x
direction and go counter clockwise, the boundary names are: “easy”, “north”, “west”, “south”. Additionally, in 3D

20 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

there are also “top” and “bottom”. For a circular/cylinder domains, the boundary names are “inflow” and “outflow”.
Likewise, in 3D there are also “top” and “bottom”. Additionally, you can change the boundary_types if using
one of the built in domain types. This way you can customize the boundary conditions without importing a whole new
mesh.

3.9 Problem Options

This section describes the problem options:

problem:
type: <str>
use_25d_model: <bool>
viscosity: <float>
lmax: <float>
turbulence_model: <str>
script_iterator: <int>
use_corrective_force: <bool>
stability_eps: <float>

3.9. Problem Options 21

WindSE Documentation, Release 2022.10.0_dev

Option Description Required Default
type

Sets the variational form
use. Choices:

“taylor_hood”:
Standard RANS
formulation
“stabilized”: Adds
a term to stabilize
P1xP1 formulations

yes None

viscosity Kinematic Viscosity no 0.1
lmax Turbulence length scale no 15.0
use_25d_model

Option to enable a small
amount of compressibility
to mimic
the effect of a 3D,
out-of-plane flow solution
in a 2D
model.

no
“2D only”

False

turbulence_model

Sets the turbulence
model.
Choices: mixing_length,
smagorinsky, or None

no mixing_length

script_iterator debugging tool, do not use no 0
use_corrective_force

add a force to the weak
form to allow the inflow
to recover

no False

stability_eps

stability term to help
increase the
well-posedness of
the linear mixed
formulation

no 1.0

3.10 Solver Options

This section lists the solver options:

22 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

solver:
type: <str>
pseudo_steady: <bool>
final_time: <float>
save_interval: <float>
num_wind_angles: <int>
endpoint: <bool>
velocity_path: <str>
power_type: <str>
save_power: <bool>
nonlinear_solver: <str>
newton_relaxation: <float>
cfl_target: 0.5 <float>
cl_iterator: 0 <int>

3.10. Solver Options 23

WindSE Documentation, Release 2022.10.0_dev

Option Description Required (for) Default
type

Sets the solver type.
Choices:

“steady”: solves for
the steady state
solution
“iterative_steady”:
uses iterative
SIMPLE solver
“unsteady”: solves
for a time varying
solution
“multiangle”:
iterates through
inflow angles

uses
inflow_angle
or [0, 2𝜋]

“imported_inflow”:
runs multiple
steady solves with

imported list
of inflow
conditions

yes None

pseudo_steady used with unsteady solver
to create a iterative steady
solver.

no
“unsteady”

False

final_time The final time for an un-
steady simulation no

“unsteady”

1.0 s

save_interval The amount of time be-
tween saving output fields no

“unsteady”

1.0 s

num_wind_angles Sets the number of an-
gles. can also be set in
inflow_angle

no
“multiangle”

1

endpoint Should the final inflow an-
gle be simulated no

“multiangle”

False

velocity_path The location of a list of in-
flow conditions yes

“imported_inflow”

power_type

Sets the power functional
Choices:

“power”: simple
power calculation
“2d_power”: power
calculation
optimized for 2D
runs

no “power”

save_power

Save the power for each
turbine to a text file in

output/name/data/power_data.txt

no True

nonlinear_solver

Specify the nonlinear
solver type. Choices:

“newton”: uses the
standard newton
solver
“snes”: PETSc
SNES solver

no “snes”

newton_relaxation Set the relaxation parame-
ter if using newton solver no

“newton”

1.0

cfl_target target CFL number for un-
steady solve no

“unsteady”

0.5

cl_iterator debugging tool, do not use

no

0

24 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

The “multiangle” solver uses the steady solver to solve the RANS formulation. Currently, the “multiangle” solver
does not support imported domains.

3.11 Optimization Options

This section lists the optimization options. If you are planning on doing optimization make sure to set
dolfin_adjoint to True.

optimization:
opt_type: <str>
control_types: <str list>
layout_bounds: <float list>
objective_type: <str, str list, dict>
save_objective: <bool>
opt_turb_id : <int, int list, str>
record_time: <str, float>
u_avg_time: <float>
opt_routine: <string>
obj_ref: <float>
obj_ref0: <float>
taylor_test: <bool>
optimize: <bool>
gradient: <bool>
constraint_types: <dict>

3.11. Optimization Options 25

WindSE Documentation, Release 2022.10.0_dev

Option Description Required Default
opt_type Type of optimization:

“minimize” or “maxi-
mize”

no maximize

control_types

Sets the parameters to
optimize. Choose Any:

“yaw”, “axial”,
“layout”, “lift”,
“drag”, “chord”

yes None

layout_bounds The bounding box for the
layout optimization

no wind_farm

objective_type

Sets the objective
function for optimization.
Visit windse.
objective_functions()

to see choices and
additional keywords. See
below to
an example for how to
evaluate multiple
objectives.
The first objective listed
will always be used in the
optimization.

no power

save_objective

Save the value of the
objective function

output/name/data/objective_data.txt
Note: power objects are
saved as power_data.txt

no True

opt_turb_id

Sets which turbines to
optimize
Choices:

int: optimize single
turbine by ID
list: optimize all in
list by ID
“all”: optimize all

no all

record_time

The amount of time to run
the simulation before
calculation of the
objective function takes
place
Choices:

“computed”: let the
solver choose the
best recording
start time based on
the flow speed and
domain size
“last”: only begin
recording at the
final_time
<float>: time in
seconds to start
recording

no
unsteady

computed

u_avg_time

when to start averaging
velocity for use in
objective
functions

no
unsteady

5

opt_routine

optimization method
choices: SLSQP,
L-BFGS-B, OM_SLSQP,
SNOPT
Note: SNOPT requires
custom install

no SLSQP

obj_ref

objective reference: Sets
the value of the objective
function that will be
treated as 1 by the
SNOPT driver

no
SLSQP

1.0

obj_ref0

objective reference: Sets
the value of the objective
function that will be
treated as 0 by the
SNOPT driver

no
SLSQP

0.0

taylor_test

Performs a test to check
the derivatives. Good
results have a
convergence rate around
2.0

no False

optimize

Optimize the given
controls using the power
output as
the objective function
using SLSQP from scipy.

no False

gradient

returns the gradient values
of the objective with
respect to the controls

no False

constraint_types

Allows the user to define
multiple constraints.
By default, a minimum
distance constraint is
applied
only when performing at
least a layout
optimization.
additional constraints can
be added similar to the
way
objective_type is
defined. Additional detail
below.

no min_dist

26 Chapter 3. The Parameter File

WindSE Documentation, Release 2022.10.0_dev

The objective_type can be defined in three ways. First as a single string such as:

optimization:
objective_type: alm_power

If the object chosen in this way has any keyword arguments, the defaults will automatically chosen. The second way
is as a list of strings like:

optimization:
objective_type: ["alm_power", "KE_entrainment", "wake_center"]

Again, the default keyword argument will be used with this method. The final way is as a full dictionary, which allow
for setting keyword arguments:

optimization:
objective_type:

power: {}
point_blockage:

location: [0.0,0.0,240.0]
plane_blockage_#1:

axis: 2
thickness: 130
center: 240.0

plane_blockage_#2:
axis: 0
thickness: 130
center: -320.0

cyld_kernel:
type: above

mean_point_blockage:
z_value: 240

Notice that since the objective named “power” does not have keyword arguments, an empty dictionary must be passed.
For a full list of objective function visit: windse.objective_functions(). Notice that we can have multiple
version of the same objective by appending the name with “_#” and then a number. This allows us to evaluate objectives
of the same type with different keyword arguments. Regardless of the number of objective types listed, currently, only
the first one will be used for an optimization.

The constraint_types option is defined in a similar way. By default the minimum distance between turbines is
setup:

constraint_types:
min_dist:

target: 2
scale: 1

This constraint will only be used if the control_types contains “layout”. Additional constraints can be added
using the same objective functions from windse.objective_functions() by setting:

constraint_types:
min_dist:

target: 2
scale: 1

plane_blockage:
target: 8.0
scale: -1
kwargs:

(continues on next page)

3.11. Optimization Options 27

WindSE Documentation, Release 2022.10.0_dev

(continued from previous page)

axis: 2
thickness: 130
center: 240.0

This will still enforce the layout constraint but will additionally enforce a “plane_blockage” type constraint. By
default, the constrains are setup like:

𝑠 * (𝑐(𝑚)− 𝑡) ≥ 0

where 𝑐 is the constraint function, 𝑡 is the target, 𝑠 is the scale, and 𝑚 are the controls. In this configuration, we are
enforcing that the result of the constraint function is greater than or equal to the target. However, we can set the scale
to -1 to flip the inequality. Just like the objective_type, multiple constraints of the same type can be use by
appending “_#” followed by a number to the end of the name with the exception of the “min_dist” type.

28 Chapter 3. The Parameter File

CHAPTER 4

Demos

4.1 Example Parameter Files

These examples show how to use the parameters file. See The Parameter File page for more details. All of these
examples can be run using windse run <file>. Some file require inputs, which can be downloaded here.

1. 2D Simulations

2. 2D Layout Optimization

3. 3D Simulations

4. Multi-Angle Simulations

5. Yaw Optimization

6. Multi-Angle Optimization

7. Actuator Line Method Single-Turbine Simulation

Note: These demos are extremely coarse to lower runtime for automated testing. To get better results, increase the
mesh resolution and try different refinements.

4.2 Example Driver Files

These examples show how you build a custom driver if desired. Check the WindSE API for details on the available
functions.

1. Constructing a Gridded Wind Farm on a 2D rectangular domain: 2D Demo.

29

WindSE Documentation, Release 2022.10.0_dev

4.3 Related Pages

4.3.1 Gridded Wind Farm on a Rectangular Domain

This demonstration will show how to set up a 2D rectangular mesh with a wind farm consisting of a 36 turbines laid
out in a 6x6 grid. This demo is associated with two files:

• Parameter File: params.yaml

• Driver File: 2D_Grid_driver.py

Setting up the parameters:

To write a WindSE driver script, we first need to define the parameters. This must be completed before building any
WindSE objects. There are two way to define the parameters:

1. Loading a parameters yaml file

2. Manually creating the parameter dictionary directly in the driver.

Both methods will be discussed below and demonstrated in the next section.

The parameter file:

First we will discuss the parameters file method. The parameter file is the main way to customize a simulation. The
driver file uses the options specified in the parameters file to run the simulation. Ideally, multiple simulations can use
a single driver file and multiple parameter files.

The parameter file is formated as a yaml structure and requires pyyaml to be read. The driver file is written in python.

The parameter file is broken up into several sections: general, domain, boundaries, and wind_farm, etc.

The full parameter file can be found here: params.yaml and more information can be found here: Parameter File
Explained.

Manual parameter dictionary:

The manual method involve creating a blank nested dictionary and populating it with the parameters needed for the
simulation. The windse_driver.driver_functions.BlankParameters() will create the blank nested
dictionary for you.

Creating the driver code:

The full driver file can be found here: 2D_Grid_driver.py First, we start off with the import statements:

import windse
import windse_driver.driver_functions as df

Next, we need to set up the parameters. If we want to load them from a yaml file we would run:

windse.initialize("params.yaml")
params = windse.windse_parameters

However, in this demo, we will define the parameters manually. Start by creating a blank parameters object:

30 Chapter 4. Demos

https://yaml.org/
https://pyyaml.org/

WindSE Documentation, Release 2022.10.0_dev

params = df.BlankParameters()

Next, populate the general options:

params["general"]["name"] = "2D_driver"
params["general"]["output"] = ["mesh","initial_guess","turbine_force","solution"]
params["general"]["output_type"] = "xdmf"

Then, the wind farm options:

params["wind_farm"]["type"] = "grid"
params["wind_farm"]["grid_rows"] = 6
params["wind_farm"]["grid_cols"] = 6
params["wind_farm"]["ex_x"] = [-1800,1800]
params["wind_farm"]["ex_y"] = [-1800,1800]
params["wind_farm"]["HH"] = 90
params["wind_farm"]["RD"] = 126
params["wind_farm"]["thickness"] = 10
params["wind_farm"]["yaw"] = 0
params["wind_farm"]["axial"] = 0.33

and the domain options:

params["domain"]["type"] = "rectangle"
params["domain"]["x_range"] = [-2500, 2500]
params["domain"]["y_range"] = [-2500, 2500]
params["domain"]["nx"] = 50
params["domain"]["ny"] = 50

Lastly, we just need to define the type of boundary conditons, function space, problem formulation and solver we
want:

params["boundary_conditions"]["vel_profile"] = "uniform"
params["function_space"]["type"] = "taylor_hood"
params["problem"]["type"] = "taylor_hood"
params["solver"]["type"] = "steady"

Now that the dictionary is set up, we need to initialize WindSE:

params = df.Initialize(params)

That was basically the hard part. Now with just a few more commands, our simulation will be running. First we need
to build the domain and wind farm objects:

dom, farm = df.BuildDomain(params)

We can inspect the wind farm by running:

farm.Plot(True)

This results in a wind farm that looks like this:

Alternatively, we could have use False to generate and save the plot, but not display it. This is useful for running
batch test or on a HPC. We could also manually save the mesh using dom.Save(), but since we specified the mesh
as an output in the parameters file, this will be done automatically when we solve.

Next, we need to setup the simulation problem:

4.3. Related Pages 31

WindSE Documentation, Release 2022.10.0_dev

problem = df.BuildProblem(params,dom,farm)

For this problem we are going to use Taylor-Hood elements, which are comprised of 2nd order Lagrange elements for
velocity and 1st order elements for pressure.

The last step is to build the solver:

solver = df.BuildSolver(params,problem)

This problem has uniform inflow from the west. The east boundary is our outflow and has a no-stress boundary
condition.

Finally, it’s time to solve:

solver.Solve()

Running solver.Solve() will save all the inputs according to the parameters file, solve the problem, and save the
solution. If everything went smoothly, the solution for wind speed should be:

32 Chapter 4. Demos

WindSE Documentation, Release 2022.10.0_dev

4.3.2 Setting up general options:

The general options are those that will effect the entire run and usually specify how to handle i/o. for this demo the
general parameters are:

general:
name: "2D"
preappend_datetime: false
output: ["mesh","initial_guess","turbine_force","solution"]
output_type: "xdmf"

The name parameter determines the naming structure for the output folders. usually the output folder is output/

4.3. Related Pages 33

WindSE Documentation, Release 2022.10.0_dev

<name>/. This is the only required options.

Setting preappend_datetime to true will append the name with a datetime stamp. This is useful when running
multiple simulation as they will be organized by date. The default option for this is false

The outputs is a list of function that will be saved when solver.Solve() is called. These strings can be in any
combination:

• mesh: saves the mesh and boundary markers

• initial_guess: saves the initial velocity and pressure used by the Newton iteration

• height: saves a function indicating the terrain height and depth

• turbine_force: saves the function that is used to represent the turbines

• solution: saves the velocity and pressure after a solve

By default, the only output is solution.

Finally, the output_type is the file format for the saved function. Currently WindSE supports xdmf and pvd with
the latter being the default. However, the mesh files are always saved in the pvd format.

4.3.3 Setting up the domain:

Next we need to set the parameters for the domain:

domain:
Description | Units
x_range: [-2500, 2500] # x-range of the domain | m
y_range: [-2500, 2500] # y-range of the domain | m
nx: 200 # Number of x-nodes | -
ny: 200 # Number of y-nodes | -

This will create a mesh that has 200 nodes in the x-direction and 200 nodes in the y-direction. The mesh will be a
rectangle with side lengths of 5000 m and centered at (0,0).

4.3.4 Setting up the wind farm:

The last step for this demo is to set up the wind farm:

wind_farm:
Description | Units
ex_x: [-1800,1800] # x-extent of the farm | m
ex_y: [-1800,1800] # y-extent of the farm | m
grid_rows: 6 # Number of rows | -
grid_cols: 6 # Number of columns | -
yaw: 0 # Yaw | rads
axial: 0.33 # Axial Induction | -
HH: 90 # Hub Height | m
RD: 126 # Turbine Diameter | m
thickness: 10 # Effective Thickness | m

This will produce a 6 by 6 grid evenly spaced in an area of [-1800,1800] X [-1800,1800]. Note that ex_x X ex_y
is the extent of the farm and should be a subset of the domain ranges. The extent accounts for the rotor diameter to
ensure all turbines including the rotors are located within the extents. The rest of the parameters determine the physical
properties of the turbines:

• yaw: The yaw of the turbines where 0 is perpendicular to an East to West inflow.

34 Chapter 4. Demos

WindSE Documentation, Release 2022.10.0_dev

• axial: The axial induction

• HH: The hub height relative to the ground

• RD: The rotor diameter

• thickness: The effective thickness of the rotor used for calculating the turbine force

4.3.5 Other Required Parameters:

Additionally, we need to specify a few parameters that are required for some checks. These options are not actually
used within the custom driver:

problem:
type: taylor-hood

solver:
type: steady

4.3. Related Pages 35

WindSE Documentation, Release 2022.10.0_dev

36 Chapter 4. Demos

CHAPTER 5

Studies

This is a list of studies performed with WindSE.

5.1 Actuator Disk Mesh Convergence

This study is designed to develop intuition on how refined the actuator disk model needs to be to produce converged
power.

5.1.1 Keywords:

mesh, actuator disk, power

5.1.2 Input files and code version:

This study was ran using this parameter file and code version:

• Parameter File: ../../../demo/documented/studies/disk_mesh_convergence/
simulation/power.yaml

• Code Version: WindSE 2021.08.01

5.1.3 Setup:

This simulation starts with a 3x3 grid arrangement of turbines with 3 rotor diameters padding for the inflow, outflow
and sides as seen in Figure 1. The initial mesh has 16x16x10 cells in the x, y, and z directions, respectively. The
mesh is then refined up to 3 times to get the mesh seen in Figure 2. Each refinement is local in a cylinder centered on
each turbine with a radius of 1.25 time the rotor diameter and extending the full height of the turbine. For each level
of refinement, a steady RANS simulation is performed with log layer inflow with hub height inflow speed of 8 m/s
with the wind blowing from west to east. The number of refinement was controlled using the command line override
parameter:

37

https://github.com/NREL/WindSE/releases/tag/2021.08.01

WindSE Documentation, Release 2022.10.0_dev

Fig. 1: Figure 1: The wind farm layout

38 Chapter 5. Studies

WindSE Documentation, Release 2022.10.0_dev

windse run power.yaml -p general:name:n=N -p refine:turbine_num:N

where N is the number of refinements.

Fig. 2: Figure 2: The mesh after 3 turbine refinements

5.1.4 Results:

The full compiled power output for each refinement level can be found in Table 1. The “mesh spacing” column is
calculated by taking the full width of the mesh (1512 m) and dividing it by the initial number of cells in the x direction
(16), which results in 94.5 m. This a measurement of the distance between mesh nodes. If we divide the rotor diameter
by the mesh spacing, we get an approximation for the number of mesh nodes that span an actuator disk. This number is
useful for determining how well resolved the disks are with a given resolution. For example, after 3 turbine refinements
a disk is represented by about 10 nodes in the mesh. The goal of this study is to determine how many nodes per turbine
is necessary to produced converged power calculations.

Table 1: Table 1: Power data for each turbine and refinement level
RefinementsDOFs

(Thou-
sands)

Mesh
Spac-
ing
(m)

Nodes/TurbTurbine_0Turbine_1Turbine_2Turbine_3Turbine_4Turbine_5Turbine_6Turbine_7Turbine_8Total

0 12.72 94.50 1.33 2.31 0.55 0.43 2.27 0.52 0.44 2.46 0.53 0.41 9.92
1 49.10 47.25 2.67 1.66 0.49 0.38 1.82 0.46 0.37 1.65 0.48 0.38 7.69
2 285.50 23.63 5.33 1.72 0.50 0.33 1.72 0.50 0.33 1.72 0.50 0.33 7.64
3 1820.6211.81 10.67 1.73 0.51 0.31 1.73 0.52 0.31 1.73 0.51 0.31 7.68

5.1. Actuator Disk Mesh Convergence 39

WindSE Documentation, Release 2022.10.0_dev

Note: The magnitude of the power produced is not part of this study and has not been calibrated. This study is
exclusively looking at mesh convergence.

First let’s look a the total power produced in Figure 3. Looking at this farm scale metric implies that convergence is
essentially reached after one level of refinement. Looking at the “nodes/turbine” column in Table 1, this corresponds
to needing only ~3 nodes per turbine, which seems exceptionally low.

Fig. 3: Figure 3: Total power with respect to mesh resolution

The story doesn’t end there though. We can also look at the power produced by the leading turbines and fully waked
turbines. Because the wind is blowing west to east the leading turbine are numbers 0, 3, 6 and the turbines we are
calling “fully waked” are numbers 2, 5, 8. The leading turbine power shown in Figure 4 shows that convergence is a
bit slower than the full farm’s power taking an additional refinement. It is also interesting to note that all three turbines
converge to the same power. This is expected because the inflow profile is not turbulent and uniform in the y direction
so each of the leading turbines should experience the exact same forces resulting in identical powers.

Finally, looking at the fully waked power production in Figure 5, we see a completely different trend. Now it is
possible that these turbines are not yet fully converged. It appears that the power is converging but might require an
additional refinement for a total of 4. Currently all of these simulation are running on a laptop, which does not have
enough memory to run the 4 refinement simulation. This implies that if the wakes are exceptionally important to the
simulation, more refinement is required. That said, after only 3 refinement, all three fully waked turbines produce the
same power, just like the leading turbines. Since this is also expected, this could indicate 3 refinements or about 10
nodes per turbine is sufficient.

5.1.5 Conclusions:

Based on the information presented in this study, we conclude that when performing a steady simulation with actuator
disk, aim for around 10 mesh nodes per turbine to get the best computational performance to accuracy. Some future

40 Chapter 5. Studies

WindSE Documentation, Release 2022.10.0_dev

Fig. 4: Figure 4: Power of the leading edge of turbines

Fig. 5: Figure 5: Power of the fully wake turbines

5.1. Actuator Disk Mesh Convergence 41

WindSE Documentation, Release 2022.10.0_dev

studies that would be useful to refine this recommendation would include investigating mesh convergence of power
with respect to:

• turbulent inflow

• increasing number of waked turbines

• refining waked turbines more than leading turbines

5.2 Actuator Line Method Validation

In this study, we compare four key along-blade forces calculated by WindSE’s actuator line method—namely lift,
drag, angle of attack, and axial velocity—to a benchmark 2018 study by Martínez-Tossas et al.1

5.2.1 Keywords:

actuator line method, ALM, lift, drag, angle of attack, velocity, validation

5.2.2 Input files and code version:

The complete details of the domain, mesh, and turbine can be found in Martínez-Tossas et al.1 but are reproduced as
a WindSE study in the following YAML file.

• Parameter File: ../../../demo/documented/studies/alm_validation/input_files/
alm_validation.yaml

• Code Version: WindSE 2021.08.01

5.2.3 Setup:

The setup used for this test and enumerated in the YAML file reproduces almost exactly the setup of Martínez-Tossas
et al.1 The turbine used is the NREL 5-MW reference turbine which has a rotor diameter, 𝐷, of 126 m operating with
rotational speed 9.155 RPM. The computational domain spans −3𝐷 ≤ 𝑥 ≤ 21𝐷, −3𝐷 ≤ 𝑦 ≤ 3𝐷, −3𝐷 ≤ 𝑧 ≤ 3𝐷
where the rotor is centered at (0, 0, 0) and oriented normal to the 𝑥+ flow direction. The grid size surrounding the
rotor is 1.96875 m, which implies 64 mesh cells across the rotor diameter. 64 actuator nodes are used along the length
of each blade with a fixed Gaussian size of 10 m. The fluid is assigned a density 𝜌 = 1.0 kg/m3, the inflow velocity
is a uniform 8 m/s applied at the 𝑥− wall, slip boundary conditions (no flow through) are set at all lateral walls, and a
0-pressure outlet condition applied at the 𝑥+ wall. The Smagorinsky eddy viscosity model is used with 𝐶𝑠 = 0.16.

Note that because we are only comparing along-blade quantities in this study and not features in the far wake, we
make a slight deviation from the paper and perform local mesh refinements to acheive the specified 1.96875 m grid
size in the region surrounding the turbine. This reproduces the mesh size and resolution around the rotor as specified
in the paper but leaves relatively coarse mesh cells in the downstream region to reduce the computational workload.
By this same token, we only run the simulations long enough for the along-blade quantities to converge, rather than
the much longer time needed to satisfy repeated flow throughs, which was experimentally found to be 100 s.

1 Luis A. Martínez-Tossas, Matthew J. Churchfield, Ali Emre Yilmaz, Hamid Sarlak, Perry L. Johnson, Jens N. Sørensen, Johan Meyers, and
Charles Meneveau, “Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-
line-based wind turbine modeling”, Journal of Renewable and Sustainable Energy 10, 033301 (2018) https://doi.org/10.1063/1.5004710

42 Chapter 5. Studies

https://github.com/NREL/WindSE/releases/tag/2021.08.01
https://doi.org/10.1063/1.5004710

WindSE Documentation, Release 2022.10.0_dev

5.2.4 Results:

The results generated by the WindSE ALM implementation are plotted alongside 4 other codes, including NREL’s
SOWFA, in Figure 1:

Fig. 6: Figure 1: Clockwise from top left, the angle of attack, relative axial velocity, lift, and drag as a function of
position along the blade calculated using two different discretizations: the 64-actuator version outlined above and a
12-acuator version testing a greatly reduced number of control points that would be more suitable for an optimization
problem (opt scale) featuring actuator-based controls.

Both the 64-node and 12-node, optimization scale, cases recover the along-blade forces well. The axial velocity is
normalized by the reference velocity, 𝑈𝑟𝑒𝑓 = 8 m/s, and so represents the percentage of freestream while the lift and
drag are non-dimensionalized by the actuator length, 𝑤, rotor diameter, density, and reference velocity.

5.2.5 Conclusions:

We find that along-blade forces are recovered very well using WindSE’s actuator line implementation. The largest
deviations away from the comparison codes seem to occur in regions of sharp change (see the first 20% of blade span
drag profile) where differences in the airfoil section resolution and the interpolation used between airfoil sections may
have a large effect.

With respect to sizing ALM simulations, we are able to produce very good agreement with both the benchmark 64-
node setup and the 12-node, optimization scale, setup. Although it is important to keep in mind that we are unlikely

5.2. Actuator Line Method Validation 43

WindSE Documentation, Release 2022.10.0_dev

to produce such good agreement in the downstream wake using this study, for the purposes of optimizing objectives
confined to the rotor plane (e.g., a single turbine’s power) with respect to along-the-blade quantities like chord or twist
angle, using ~10 actuator nodes sized to be roughly ~1/10 of the rotor diameter seems to be a good starting point. For
a more detailed convergence study of actuator node resolution and size, see the 2017 paper of Martínez-Tossas et al.2

5.2.6 References:

2 Martínez-Tossas, L. A., Churchfield, M. J., and Meneveau, C. (2017) Optimal smoothing length scale for actuator line models of wind turbine
blades based on Gaussian body force distribution. Wind Energ., 20: 1083– 1096. doi: 10.1002/we.2081.

44 Chapter 5. Studies

CHAPTER 6

WindSE API

windse.ParameterManager
windse.DomainManager
windse.RefinementManager
windse.FunctionSpaceManager
windse.BoundaryManager
windse.ProblemManager
windse.SolverManager
windse.objective_functions
windse.OptimizationManager
windse_driver.driver_functions

6.1 windse_driver.driver_functions

windse_driver.driver_functions.BlankParameters()
returns a nested dictionary that matches the first level of the parameters dictionary

windse_driver.driver_functions.BuildDomain(params)
This function build the domain and wind farm objects.

Parameters params (windse.Parameters) – an overloaded dict containing all parameters.

Returns

• dom (windse.GenericDomain) – the domain object that contains all mesh related in-
formation.

• farm (windse.GenericWindFarm) – the wind farm object that contains the turbine
information.

windse_driver.driver_functions.BuildProblem(params, dom, farm)
This function compiles everything into a single problem object and build the variational problem functional.

Parameters

45

WindSE Documentation, Release 2022.10.0_dev

• params (windse.Parameters) – an overloaded dict containing all parameters.

• dom (windse.GenericDomain) – the domain object that contains all mesh related in-
formation.

• farm (windse.GenericWindFarm) – the wind farm object that contains the turbine
information.

Returns contains all information about the simulation.

Return type problem (windse.GenericProblem)

windse_driver.driver_functions.BuildSolver(params, problem)
This function builds the solver object. Solve with solver.Solve()

Parameters

• params (windse.Parameters) – an overloaded dict containing all parameters.

• problem (windse.GenericProblem) – contains all information about the simulation.

Returns solver – contains the solver routines.

Return type windse.GenericSolver

windse_driver.driver_functions.DefaultParameters()
return the default parameters list

windse_driver.driver_functions.Initialize(params_loc=None)
This function initialized the windse parameters.

Parameters params_loc (str) – the location of the parameter yaml file.

Returns params – an overloaded dict containing all parameters.

Return type windse.Parameters

windse_driver.driver_functions.SetupSimulation(params_loc=None)
This function automatically sets up the entire simulation. Solve with solver.Solve()

Parameters params_loc (str) – the location of the parameter yaml file.

Returns

• params (windse.Parameters) – an overloaded dict containing all parameters.

• problem (windse.GenericProblem) – contains all information about the simulation.

• solver (windse.GenericSolver) – contains the solver routines. Solve with solver.Solve()

6.1.1 Functions

windse_driver.driver_functions.BlankParameters()
returns a nested dictionary that matches the first level of the parameters dictionary

windse_driver.driver_functions.BuildDomain(params)
This function build the domain and wind farm objects.

Parameters params (windse.Parameters) – an overloaded dict containing all parameters.

Returns

• dom (windse.GenericDomain) – the domain object that contains all mesh related in-
formation.

46 Chapter 6. WindSE API

WindSE Documentation, Release 2022.10.0_dev

• farm (windse.GenericWindFarm) – the wind farm object that contains the turbine
information.

windse_driver.driver_functions.BuildProblem(params, dom, farm)
This function compiles everything into a single problem object and build the variational problem functional.

Parameters

• params (windse.Parameters) – an overloaded dict containing all parameters.

• dom (windse.GenericDomain) – the domain object that contains all mesh related in-
formation.

• farm (windse.GenericWindFarm) – the wind farm object that contains the turbine
information.

Returns contains all information about the simulation.

Return type problem (windse.GenericProblem)

windse_driver.driver_functions.BuildSolver(params, problem)
This function builds the solver object. Solve with solver.Solve()

Parameters

• params (windse.Parameters) – an overloaded dict containing all parameters.

• problem (windse.GenericProblem) – contains all information about the simulation.

Returns solver – contains the solver routines.

Return type windse.GenericSolver

windse_driver.driver_functions.DefaultParameters()
return the default parameters list

windse_driver.driver_functions.Initialize(params_loc=None)
This function initialized the windse parameters.

Parameters params_loc (str) – the location of the parameter yaml file.

Returns params – an overloaded dict containing all parameters.

Return type windse.Parameters

windse_driver.driver_functions.SetupSimulation(params_loc=None)
This function automatically sets up the entire simulation. Solve with solver.Solve()

Parameters params_loc (str) – the location of the parameter yaml file.

Returns

• params (windse.Parameters) – an overloaded dict containing all parameters.

• problem (windse.GenericProblem) – contains all information about the simulation.

• solver (windse.GenericSolver) – contains the solver routines. Solve with solver.Solve()

6.1. windse_driver.driver_functions 47

WindSE Documentation, Release 2022.10.0_dev

48 Chapter 6. WindSE API

CHAPTER 7

Indices and tables

• genindex

• modindex

49

WindSE Documentation, Release 2022.10.0_dev

50 Chapter 7. Indices and tables

Python Module Index

w
windse_driver.driver_functions, 45

51

WindSE Documentation, Release 2022.10.0_dev

52 Python Module Index

Index

B
BlankParameters() (in module

windse_driver.driver_functions), 45, 46
BuildDomain() (in module

windse_driver.driver_functions), 45, 46
BuildProblem() (in module

windse_driver.driver_functions), 45, 47
BuildSolver() (in module

windse_driver.driver_functions), 46, 47

D
DefaultParameters() (in module

windse_driver.driver_functions), 46, 47

I
Initialize() (in module

windse_driver.driver_functions), 46, 47

S
SetupSimulation() (in module

windse_driver.driver_functions), 46, 47

W
windse_driver.driver_functions (module),

45

53

	Installation
	Running WindSE
	The Parameter File
	Demos
	Studies
	WindSE API
	Indices and tables
	Python Module Index
	Index

