

Welcome to WindSE’s documentation!

Contents:

	Installation

	Running WindSE

	The Parameter File

	Demos

	WindSE API

Indices and tables

	Index

	Module Index

Installation

It is easies to run WindSE within a conda environment. To install conda check this link: Conda Installation. [https://conda.io/projects/conda/en/latest/user-guide/install/] Additionally, WindSE has been tested on MacOS Catalina (10.15), but in theory should also run on linux. Windows is not recommended.

Source Conda Installation (Script):

The easiest way to install windse is to run:

sh install.sh <enviroment_name>

Then the enviroment can be activated using:

conda activate <enviroment_name>

Source Conda Installation (Manual):

If you want to use the latest version or just want to setup the environment manually, follow these steps. After conda is installed, create a new environment using:

conda create --name <enviroment_name>

You can replace the name <enviroment_name> with a different name for the environment if you want. Next we activate the environment using:

conda activate <enviroment_name>

or whatever you named your environment. Now we need to install the dependent packages using:

conda install -c conda-forge fenics=2019.1.0=py38_9 dolfin-adjoint matplotlib scipy=1.4.1 slepc mshr hdf5 pyyaml memory_profiler pytest pytest-cov pytest-mpi coveralls

Next, we need to install the tsfc form compilers: [https://fenics.readthedocs.io/projects/ffc/en/latest/installation.html]:

pip install git+https://github.com/blechta/tsfc.git@2018.1.0
pip install git+https://github.com/blechta/COFFEE.git@2018.1.0
pip install git+https://github.com/blechta/FInAT.git@2018.1.0
pip install git+https://github.com/mdolab/pyoptsparse@v1.0
pip install singledispatch networkx pulp openmdao

Finally, download/clone the WindSE repo and run:

pip install -e .

in the root folder.

Running WindSE

To run WindSE, first create a parameters file (as described in The Parameter File and
demonstrated in Demos). Then activate the conda environment using:

source activate <enviroment_name>

where the <enviroment_name> is what was defined in the install process
then run:

windse run <params file>

where <params files> is the path of the parameters file you wish to run.
By default windse searches for “params.txt” in the current directory if
no file is supplied.

Sit back and let the magic happen. Additionally, you can run:

windse run <params file> -p group:option:value

where group:option:value is a single unbroken string and the group is
the group in the params file, the option is the specific option in that
group and the value is the new value. This allows for overriding parameters
in the yaml file via the terminal. For example: wind_farm:HH:140 will
change the hub height of all turbines in a “grid” or “random” farm to 140 m
regardless of what was defined in the params.yaml file.

The Parameter File

This is a comprehensive list of all the available parameters. The default values are stored within default_parameters.yaml located in the windse directory of the python source files.

	Adding a New Parameter

	General Options

	Domain Options

	Wind Farm Options

	Refinement Options

	Function Space Options

	Boundary Condition Options

	Problem Options

	Solver Options

	Optimization Options

Adding a New Parameter

To add a new parameter, first add an entry in the default_parameters.yaml file under one of the major sections with a unique name. The value of that entry will then be an attribute of the class associated with that section. For example: adding the entry test_param: 42 under the wind_farm section will add the attribute self.test_param to the GenericWindFarm class with the default value of 42.

General Options

This section is for options about the run itself. The basic format is:

general:
 name: <str>
 preappend_datetime: <bool>
 output: <str list>
 output_folder: <str>
 output_type: <str>
 dolfin_adjoint: <bool>
 debug_mode: <bool>

	Option

	Description

	Required

	Default

	name

	Name of the run and the folder in output/.

	no

	“Test”

	preappend_datetime

	Append the date to the output folder name.

	no

	False

	output

	
Determines which functions to save.

Select any combination of the following:

“mesh”, “initial_guess”, “height”,

“turbine_force”, “solution”, “debug”

	no

	[“solution”]

	output_folder

	The folder location for all the output

	no

	“output/”

	output_type

	Output format: “pvd” or “xdmf”.

	no

	“pvd”

	dolfin_adjoint

	Required if performing any optimization.

	no

	False

	debug_mode

	Saves “tagged_output.yaml” full of debug data

	no

	False

Domain Options

This section will define all the parameters for the domain:

domain:
 type: <str>
 path: <str>
 mesh_path: <str>
 terrain_path: <str>
 bound_path: <str>
 filetype: <str>
 scaled: <bool>
 ground_reference: <float>
 streamwise_periodic: <bool>
 spanwise_periodic: <bool>
 x_range: <float list>
 y_range: <float list>
 z_range: <float list>
 nx: <int>
 ny: <int>
 nz: <int>
 mesh_type: <str>
 center: <float list>
 radius: <float>
 nt: <int>
 res: <int>
 interpolated: <bool>
 analytic: <bool>
 gaussian:
 center: <float list>
 theta: <float>
 amp: <float>
 sigma_x: <float>
 sigma_y: <float>
 plane:
 intercept: <float list>
 mx: <float>
 my: <float>

	Option

	Description

	Required (for)

	Default

	Units

	type

	
Sets the shape/dimension of the mesh.

Choices:

“rectangle”, “box”, “cylinder”, “circle”

“imported”, “interpolated”

	yes

	None

	-

	path

	Folder of the mesh data to import

	
yes or *_path

“imported”

	*_path

	-

	mesh_path

	
Location of specific mesh file

Default file name: “mesh”

	
no

“imported”

	path

	-

	terrain_path

	
Location of specific terrain file

Default file name: “terrain.txt”

Note: Only file required by “interpolated”

	
no

“imported”

	path

	-

	bound_path

	
Location of specific boundary marker data

Default file name: “boundaries”

	
no

“imported”

	path

	-

	filetype

	file type for imported mesh: “xml.gz”, “h5”

	
no

“imported”

	“xml.gz”

	-

	scaled

	
Scales the domain to km instead of m.

WARNING: extremely experimental!

	no

	False

	-

	ground_reference

	
The height (z coordinate) that is

considered ground

	no

	0.0

	m

	streamwise_periodic

	
Sets periodic boundary condition in the x

direction (NOT FULLY IMPLEMENTED)

	no

	False

	-

	spanwise_periodic

	
Sets periodic boundary condition in the y

direction (NOT FULLY IMPLEMENTED)

	no

	False

	-

	x_range

	List of two floats defining the x range

	
“rectangle”

“box”

	None

	m

	y_range

	List of two floats defining the y range

	
“rectangle”

“box”

	None

	m

	z_range

	List of two floats defining the z range

	
“box”

“cylinder”

	None

	m

	nx

	The number of nodes in the x direction

	
“rectangle”

“box”

	None

	-

	ny

	The number of nodes in the x direction

	
“rectangle”

“box”

	None

	-

	nz

	The number of nodes in the x direction

	
“box”

“cylinder”

	None

	-

	mesh_type

	
The meshing type when generating a

cylindric domain.

Choices:

“mshr”, “elliptic”, “squircular”,

“stretch”

Note: nz doesn’t work with “mshr”

	
“cylinder”

“circle”

	“mshr”

	-

	center

	A 2D list indicating the center of the base

	
“cylinder”

“circle”

	None

	m

	radius

	The radius of the cylinder

	
“cylinder”

“circle”

	None

	m

	nt

	
The number of radial segments to

approximate the cylinder

	
“cylinder”

“circle”

	None

	-

	res

	
The resolution of the mesh. It should be

less than nt.

Note: res only works with “mshr”

	
“cylinder”

“circle”

	None

	-

	interpolated

	
Indicate if the topography is interpolated

from file or function.

	
no

“box”

“cylinder”

	False

	-

	analytic

	
Indicates if the interpolated function is

analytic or from file.

	no

	False

	-

	gaussian

	
If analytic is true, a Gaussian hill will

be created using the following parameters.

Note: requires interpolated and analytic.

	
“interpolated”

“analytic”

	None

	-

	center

	The center point of the gaussian hill.

	no

	[0.0,0.0]

	m

	amp

	The amplitude of the hill.

	yes

	None

	m

	sigma_x

	The extent of the hill in the x direction.

	yes

	None

	m

	sigma_y

	The extent of the hill in the y direction.

	yes

	None

	m

	theta

	The rotation of the hill.

	no

	0.0

	rad

	plane

	
If analytic is true, the ground will be

represented as a plane

Note: requires interpolated and analytic.

	
“interpolated”

“analytic”

	None

	-

	intercept

	The equation of a plane intercept

	no

	[0.0,0.0,0.0]

	m

	mx

	The slope in the x direction

	yes

	None

	m

	my

	The slope in the y direction

	yes

	None

	m

To import a domain, three files are required:

	mesh.xml.gz - this contains the mesh in a format dolfin can handle

	boundaries.xml.gz - this contains the facet markers that define where the boundaries are

	topology.txt - this contains the data for the ground topology.

The topology file assumes that the coordinates are from a uniform mesh.
It contains three column: x, y, z. The x and y columns contain
just the unique values. The z column contains the ground values
for every combination of x and y. The first row must be the number
of points in the x and y direction. Here is an example for z=x+y/10:

3 3 9
0 0 0.0
1 1 0.1
2 2 0.2
 1.0
 1.1
 1.2
 2.0
 2.1
 2.2

Note: If using “h5” file format, the mesh and boundary will be in one file.

Wind Farm Options

This section will define all the parameters for the wind farm:

wind_farm:
 type: <str>
 path: <str>
 display: <str>
 ex_x: <float list>
 ex_y: <float list>
 x_spacing: <float>
 y_spacing: <float>
 x_shear: <float>
 y_shear: <float>
 min_sep_dist: <float>
 grid_rows: <int>
 grid_cols: <int>
 jitter: <float>
 numturbs: <int>
 seed: <int>
 HH: <float>
 RD: <float>
 thickness: <float>
 yaw: <float>
 axial: <float>
 force: <str>
 turbine_method: <str>
 rpm: <float>
 read_turb_data: <str>
 blade_segments: <int or str>
 use_local_velocity: <bool>
 max_chord: <float>
 chord_factor: <float>
 gauss_factor: <float>

	Option

	Description

	Required (for)

	Default

	Units

	type

	
Sets the type of farm. Choices:

“grid”, “random”, “imported”

	yes

	None

	-

	path

	Location of the wind farm text file

	“imported”

	None

	-

	display

	
Displays a plot of the wind farm

	no

	False

	-

	ex_x

	
The x extents of the farm where turbines

can be placed

	
“grid”

“random”

	None

	m

	ex_y

	
The y extents of the farm where turbines

can be placed

	
“grid”

“random”

	None

	m

	x_spacing

	
Alternative method for defining grid farm

x distance between turbines

	“grid”

	None

	m

	y_spacing

	
Alternative method for defining grid farm

y distance between turbines

	“grid”

	None

	m

	x_shear

	
Alternative method for defining grid farm

offset in the x direction between rows

	
no

“grid”

	None

	m

	y_shear

	
Alternative method for defining grid farm

offset in the y direction between columns

	
no

“grid”

	None

	m

	min_sep_dist

	
Minimum distance between any two turbines

in a random farm

	
no

“random”

	2

	RD

	grid_rows

	The number of turbines in the x direction

	“grid”

	None

	-

	grid_cols

	The number of turbines in the y direction

	“grid”

	None

	-

	jitter

	
Displaces turbines in a random direction

by this amount

	
no

“grid”

	0.0

	m

	numturbs

	The total number of turbines

	“random”

	None

	-

	seed

	
The random seed used to generate/jitter the

farm. Useful for repeating random runs

	
no

“random”

	None

	-

	HH

	The hub height of the turbine from ground

	
“grid”

“random”

	None

	m

	RD

	The rotor diameter

	
“grid”

“random”

	None

	m

	thickness

	The effective thickness of the rotor disk

	
“grid”

“random”

	None

	m

	yaw

	
Determines the yaw of all turbines. Yaw is

relative to the wind inflow direction

	
“grid”

“random”

	None

	rad

	axial

	The axial induction factor

	
“grid”

“random”

	None

	-

	force

	
the radial distribution of force

Choices: “sine”, “constant”

	no

	“sine”

	-

	turbine_method

	
determines how the turbine force is built

Choices: “numpy”, “dolfin” , “alm”

“numpy” - builds entirely using arrays,

works best for small farms

“dolfin” - uses the FEniCS backend,

robust but potentially slow

“alm” - an actuator line method using

numpy array, currently only

support single turbine farms

	no

	“dolfin”

	-

	rpm

	
sets the revolutions per minute if using

the alm turbine method

	“alm”

	10.0

	rev/min

	read_turb_data

	
Path to .csv file with chord, lift, and

drag coefficients

	no

	None

	-

	blade_segments

	
number of nodes along the rotor radius

use “computed” to automatically set

	“alm”

	“computed”

	-

	use_local_velocity

	
use the velocity at the rotor to compute

alm forces (otherwise use inflow)

	“alm”

	True

	-

	max_chord

	upper limit when optimizing chord

	“alm”

	1000

	m

	chord_factor

	
multiplies all the chords by a constant

factor

	“alm”

	1.0

	-

	gauss_factor

	
factor that gets multiplied by the minimum

mesh spacing to set the gaussian width

	“alm”

	2.0

	-

To import a wind farm, create a .txt file with this formatting:

x y HH Yaw Diameter Thickness Axial_Induction
200.00 0.0000 80.000 0.000 126.0 10.5 0.33
800.00 0.0000 80.000 0.000 126.0 10.5 0.33

The first row isn’t necessary. Each row defines a different turbine.

Refinement Options

This section describes the options for refinement
The domain created with the previous options can be refined in special
ways to maximize the efficiency of the number DOFs. None of these options
are required. There are three types of mesh manipulation: warp, farm refine,
turbine refine. Warp shifts more cell towards the ground, refining the farm
refines within the farm extents, and refining the turbines refines within
the rotor diameter of a turbine. When choosing to warp, a “smooth” warp will
shift the cells smoothly towards the ground based on the strength. A “split”
warp will attempt to create two regions, a high density region near the
ground and a low density region near the top

The options are:

refine:
 warp_type: <str>
 warp_strength: <float>
 warp_percent: <float>
 warp_height: <float>
 farm_num: <int>
 farm_type: <str>
 farm_factor: <float>
 turbine_num: <int>
 turbine_type: <str>
 turbine_factor: <float>
 refine_custom: <list list>
 refine_power_calc: <bool>

	Option

	Description

	warp_type

	
Choose to warp the mesh to place more cells

near the ground. Choices:

“smooth”, “split”

	warp_strength

	
The higher the strength the more cells

moved towards the ground. Requires: “smooth”

	warp_percent

	
The percent of the cell moved below the

warp height. Requires: “split”

	warp_height

	
The height the cell are moved below

Requires: “split”

	farm_num

	Number of farm refinements

	farm_type

	
The shape of the refinement around the farm

Choices:

“full” - refines the full mesh

“box” - refines in a box near the farm

“cylinder” - cylinder centered at the farm

“stream” - stream-wise cylinder around farm

(use for 1 row farms)

	farm_factor

	
A scaling factor to make the refinement

area larger or smaller

	turbine_num

	Number of turbine refinements

	turbine_type

	
The shape of the refinement around turbines

Choices:

“simple” - cylinder around turbine

“tear” - tear drop shape around turbine

“wake” - cylinder to capture wake

	turbine_factor

	
A scaling factor to make the refinement

area larger or smaller

	refine_custom

	
This is a way to define multiple refinements

in a specific order allowing for more

complex refinement options. Example below

	refine_power_calc

	
bare minimum refinement around turbines to

increase power calculation accuracy

To use the “refine_custom” option, define a list of lists where each element defines
refinement based on a list of parameters. Example:

refine_custom: [
 ["full", []],
 ["full", []],
 ["box", [[[-500,500],[-500,500],[0,150]]]],
 ["cylinder", [[0,0,0], 750, 150]],
 ["simple", [100]],
 ["tear", [50, 0.7853]]
]

For each refinement, the first option indicates how many time this specific
refinement will happen. The second option indicates the type of refinement:
“full”, “square”, “circle”, “farm_circle”, “custom”. The last option
indicates the extent of the refinement.

The example up above will result in five refinements:

	Two full refinements

	One box refinement bounded by: [[-500,500],[-500,500],[0,150]]

	One cylinder centered at origin with radius 750 m and a height of 150 m

	One simple turbine refinement with radius 100 m

	One teardrop shaped turbine refinement radius 500 m and rotated by 0.7853 rad

The syntax for each refinement type is:

["full", []]
["box", [[[x_min,x_max],[y_min,y_max],[z_min,z_max]], expand_factor]]
["cylinder", [[c_x,c_y,c_z], radius, height, expand_factor]]
["stream", [[c_x,c_y,c_z], radius, length, theta, offset, expand_factor]]
["simple", [radius, expand_factor]]
["tear", [radius, theta, expand_factor]]
["wake", [radius, length, theta, expand_factor]]

Note

	For cylinder, the center is the base of the cylinder

	For stream, the center is the start of the vertical base and offset indicates the rotation offset

	For stream, wake, length is the distance center to the downstream end of the cylinder

	For stream, tear, wake, theta rotates the shape around the center

Function Space Options

This section list the function space options:

function_space:
 type: <str>
 quadrature_degree: <int>
 turbine_space: <str>
 turbine_degree: <int>

	Option

	Description

	Required

	Default

	type

	
Sets the type of farm. Choices:

“linear”: P1 elements for both velocity and pressure

“taylor_hood”: P2 for velocity, P1 for pressure

	yes

	None

	quadrature_degree

	
Sets the quadrature degree for all integration and

interpolation for the whole simulation

	no

	6

	turbine_space

	
Sets the function space for the turbine. Only needed

if using “numpy” for turbine_method

Choices: “Quadrature”, “CG”

	no

	Quadrature

	turbine_degree

	
The quadrature degree for specifically the turbine

force representation. Only works “numpy” method

Note: if using Quadrature space, this value must equal

the quadrature_degree

	no

	6

Boundary Condition Options

This section describes the boundary condition options. There are three types
of boundary conditions: inflow, no slip, no stress. By default, inflow is
prescribed on boundary facing into the wind, no slip on the ground and
no stress on all other faces. These options describe the inflow boundary
velocity profile.

boundary_conditions:
 vel_profile: <str>
 HH_vel: <float>
 vel_height: <float, str>
 power: <float>
 k: <float>
 turbsim_path <str>
 inflow_angle: <float, list>
 boundary_names:
 east: <int>
 north: <int>
 west: <int>
 south: <int>
 bottom: <int>
 top: <int>
 inflow: <int>
 outflow: <int>
 boundary_types:
 inflow: <str list>
 no_slip: <str list>
 free_slip: <str list>
 no_stress: <str list>

	Option

	Description

	Required

	Default

	vel_profile

	
Sets the velocity profile. Choices:

“uniform”: constant velocity of \(u_{HH}\)

“power”: a power profile

“log”: log layer profile

“turbsim”: use a turbsim simulation as inflow

	yes

	None

	HH_vel

	The velocity at hub height, \(u_{HH}\), in m/s.

	no

	8.0

	vel_height

	sets the location of the reference velocity. Use “HH” for hub height

	no

	“HH”

	power

	The power used in the power flow law

	no

	0.25

	k

	The constant used in the log layer flow

	no

	0.4

	inflow_angle

	
Sets the initial inflow angle for the boundary condition. A multiangle solve can be

indicated by setting this value to a list with values: [start, stop, n] where the solver

will perform n solves, sweeping uniformly through the start and stop angles. The number of

solves, n, can also be defined in the solver parameters.

	no

	None

	turbsim_path

	The location of turbsim profiles used as inflow boundary conditions

	
yes

“turbsim”

	None

	boundary_names

	A dictionary used to identify the boundaries

	no

	See Below

	boundary_types

	A dictionary for defining boundary conditions

	no

	See Below

If you are importing a mesh or want more control over boundary conditions, you can specify the boundary markers using names and types.
The default for these two are

Rectangular Mesh:

boundary_condition:
 boundary_names:
 east: 1
 north: 2
 west: 3
 south: 4
 boundary_types:
 inflow: ["west","north","south"]
 no_stress: ["east"]

Box Mesh:

boundary_condition:
 boundary_names:
 east: 1
 north: 2
 west: 3
 south: 4
 bottom: 5
 top: 6
 boundary_types:
 inflow: ["west","north","south"]
 free_slip: ["top"]
 no_slip: ["bottom"]
 no_stress: ["east"]

Circle Mesh:

boundary_condition:
 boundary_names:
 outflow: 7
 inflow: 8
 boundary_types:
 inflow: ["inflow"]
 no_stress: ["outflow"]

Cylinder Mesh:

boundary_condition:
 boundary_names:
 outflow: 5
 inflow: 6
 bottom: 7
 top: 8
 boundary_types:
 inflow: ["inflow"]
 free_slip: ["top"]
 no_slip: ["bottom"]
 no_stress: ["outflow"]

These defaults correspond to an inflow wind direction from West to East.

When marking a rectangular/box domains, from a top-down perspective, start from
the boundary in the positive x direction and go counter clockwise, the boundary
names are: “easy”, “north”, “west”, “south”. Additionally, in 3D there are also
“top” and “bottom”. For a circular/cylinder domains, the boundary names are
“inflow” and “outflow”. Likewise, in 3D there are also “top” and “bottom”.
Additionally, you can change the boundary_types if using one of the built
in domain types. This way you can customize the boundary conditions without
importing a whole new mesh.

Problem Options

This section describes the problem options:

problem:
 type: <str>
 use_25d_model: <bool>
 viscosity: <float>
 lmax: <float>
 turbulence_model: <str>
 script_iterator: <int>
 use_corrective_force: <bool>
 stability_eps: <float>

	Option

	Description

	Required

	Default

	type

	
Sets the variational form use. Choices:

“taylor_hood”: Standard RANS formulation

“stabilized”: Adds a term to stabilize P1xP1 formulations

	yes

	None

	viscosity

	Kinematic Viscosity

	no

	0.1

	lmax

	Turbulence length scale

	no

	15.0

	use_25d_model

	
Option to enable a small amount of compressibility to mimic

the effect of a 3D, out-of-plane flow solution in a 2D

model.

	
no

“2D only”

	False

	turbulence_model

	
Sets the turbulence model.

Choices: mixing_length, smagorinsky, or None

	no

	mixing_length

	script_iterator

	debugging tool, do not use

	no

	0

	use_corrective_force

	
add a force to the weak form to allow the inflow to recover

	no

	False

	stability_eps

	
stability term to help increase the well-posedness of

the linear mixed formulation

	no

	1.0

Solver Options

This section lists the solver options:

solver:
 type: <str>
 pseudo_steady: <bool>
 final_time: <float>
 save_interval: <float>
 num_wind_angles: <int>
 endpoint: <bool>
 velocity_path: <str>
 power_type: <str>
 save_power: <bool>
 nonlinear_solver: <str>
 newton_relaxation: <float>
 cfl_target: 0.5 <float>
 cl_iterator: 0 <int>

	Option

	Description

	Required (for)

	Default

	type

	
Sets the solver type. Choices:

“steady”: solves for the steady state solution

“iterative_steady”: uses iterative SIMPLE solver

“unsteady”: solves for a time varying solution

“multiangle”: iterates through inflow angles

uses inflow_angle or [0, \(2\pi\)]

“imported_inflow”: runs multiple steady solves with

imported list of inflow conditions

	yes

	None

	pseudo_steady

	used with unsteady solver to create a iterative steady solver.

	
no

“unsteady”

	False

	final_time

	The final time for an unsteady simulation

	
no

“unsteady”

	1.0 s

	save_interval

	The amount of time between saving output fields

	
no

“unsteady”

	1.0 s

	num_wind_angles

	Sets the number of angles. can also be set in inflow_angle

	
no

“multiangle”

	1

	endpoint

	Should the final inflow angle be simulated

	
no

“multiangle”

	False

	velocity_path

	The location of a list of inflow conditions

	
yes

“imported_inflow”

	

	power_type

	
Sets the power functional

Choices:

“power”: simple power calculation

“2d_power”: power calculation optimized for 2D runs

	no

	“power”

	save_power

	
Save the power for each turbine to a text file in

output/name/data/power_data.txt

	no

	True

	nonlinear_solver

	
Specify the nonlinear solver type. Choices:

“newton”: uses the standard newton solver

“snes”: PETSc SNES solver

	no

	“snes”

	newton_relaxation

	Set the relaxation parameter if using newton solver

	
no

“newton”

	1.0

	cfl_target

	target CFL number for unsteady solve

	
no

“unsteady”

	0.5

	cl_iterator

	debugging tool, do not use

	
no

	0

The “multiangle” solver uses the steady solver to solve the RANS formulation.
Currently, the “multiangle” solver does not support imported domains.

Optimization Options

This section lists the optimization options. If you are planning on doing
optimization make sure to set dolfin_adjoint to True.

optimization:
 opt_type: <str>
 control_types: <str list>
 layout_bounds: <float list>
 objective_type: <str, str list, dict>
 save_objective: <bool>
 opt_turb_id : <int, int list, str>
 record_time: <str, float>
 u_avg_time: <float>
 opt_routine: <string>
 obj_ref: <float>
 obj_ref0: <float>
 taylor_test: <bool>
 optimize: <bool>
 gradient: <bool>

	Option

	Description

	Required

	Default

	opt_type

	Type of optimization: “minimize” or “maximize”

	no

	maximize

	control_types

	
Sets the parameters to optimize. Choose Any:

“yaw”, “axial”, “layout”, “lift”, “drag”, “chord”

	yes

	None

	layout_bounds

	The bounding box for the layout optimization

	no

	wind_farm

	objective_type

	
Sets the objective function for optimization.

Visit windse.objective_functions()

to see choices and additional keywords. See below to

an example for how to evaluate multiple objectives.

The first objective listed will always be used in the

optimization.

	no

	power

	save_objective

	
Save the value of the objective function

output/name/data/objective_data.txt

Note: power objects are saved as power_data.txt

	no

	True

	opt_turb_id

	
Sets which turbines to optimize

Choices:

int: optimize single turbine by ID

list: optimize all in list by ID

“all”: optimize all

	no

	all

	record_time

	
The amount of time to run the simulation before

calculation of the objective function takes place

Choices:

“computed”: let the solver choose the best recording

start time based on the flow speed and domain size

“last”: only begin recording at the final_time

<float>: time in seconds to start recording

	
no

unsteady

	computed

	u_avg_time

	
when to start averaging velocity for use in objective

functions

	
no

unsteady

	5

	opt_routine

	
optimization method

choices: SLSQP, L-BFGS-B, OM_SLSQP, SNOPT

Note: SNOPT requires custom install

	no

	SLSQP

	obj_ref

	
objective reference: Sets the value of the objective

function that will be treated as 1 by the SNOPT driver

	
no

SLSQP

	1.0

	obj_ref0

	
objective reference: Sets the value of the objective

function that will be treated as 0 by the SNOPT driver

	
no

SLSQP

	0.0

	taylor_test

	
Performs a test to check the derivatives. Good

results have a convergence rate around 2.0

	no

	False

	optimize

	
Optimize the given controls using the power output as

the objective function using SLSQP from scipy.

	no

	False

	gradient

	
returns the gradient values of the objective with

respect to the controls

	no

	False

The objective_type can be defined in three ways. First as a single string such as:

optimization:
 objective_type: alm_power

If the object chosen in this way has any keyword arguments, the defaults will automatically chosen. The second way is as a list of strings like:

optimization:
 objective_type: ["alm_power", "KE_entrainment", "wake_center"]

Again, the default keyword argument will be used with this method. The final way is as a full dictionary, which allow for setting keyword arguments:

optimization:
 objective_type:
 power: {}
 point_blockage:
 location: [0.0,0.0,240.0]
 plane_blockage:
 axis: 2
 thickness: 130
 center: 240.0
 cyld_kernel:
 type: above
 mean_point_blockage:
 z_value: 240

Notice that since the objective named “power” does not have keyword arguments, an empty dictionary must be passed. For a full list of objective function visit: windse.objective_functions()

Demos

Example Parameter Files

These examples show how to use the parameters file. See The Parameter File page for more details.
All of these examples can be run using windse run <file>. Some file require
inputs, which can be downloaded here.

	2D Simulations

	2D Layout Optimization

	3D Simulations

	Multi-Angle Simulations

	Yaw Optimization

	Multi-Angle Optimization

	Actuator Line Method Single-Turbine Simulation

Note

These demos are extremely coarse to lower runtime for automated testing. To get better results, increase the mesh resolution and try different refinements.

Example Driver Files

These examples show how you build a custom driver if desired. Check the WindSE API
for details on the available functions.

	Constructing a Gridded Wind Farm on a 2D rectangular domain: 2D Demo.

Related Pages

	Gridded Wind Farm on a Rectangular Domain

	Setting up general options:

	Setting up the domain:

	Setting up the wind farm:

	Other Required Parameters:

Gridded Wind Farm on a Rectangular Domain

This demonstration will show how to set up a 2D rectangular mesh with a
wind farm consisting of a 36 turbines laid out in a 6x6 grid. This demo is
associated with two files:

	Parameter File: params.yaml

	Driver File: 2D_Grid_driver.py

Setting up the parameters:

To write a WindSE driver script, we first need to define the parameters. This
must be completed before building any WindSE objects. There are two way to
define the parameters:

	Loading a parameters yaml file

	Manually creating the parameter dictionary directly in the driver.

Both methods will be discussed below and demonstrated in the next section.

The parameter file:

First we will discuss the parameters file method.
The parameter file is the main way to customize a simulation. The driver
file uses the options specified in the parameters file to run the simulation.
Ideally, multiple simulations can use a single driver file and multiple
parameter files.

The parameter file is formated as a yaml [https://yaml.org/] structure and
requires pyyaml [https://pyyaml.org/] to be read. The driver file is
written in python.

The parameter file is broken up into several sections: general, domain,
boundaries, and wind_farm, etc.

The full parameter file can be found here: params.yaml and more information can be found here: Parameter File Explained.

Manual parameter dictionary:

The manual method involve creating a blank nested dictionary and populating it with
the parameters needed for the simulation. The windse_driver.driver_functions.BlankParameters()
will create the blank nested dictionary for you.

Creating the driver code:

The full driver file can be found here: 2D_Grid_driver.py First,
we start off with the import statements:

import windse
import windse_driver.driver_functions as df

Next, we need to set up the parameters. If we want to load them from a yaml file we would run:

windse.initialize("params.yaml")
params = windse.windse_parameters

However, in this demo, we will define the parameters manually. Start by creating a blank parameters object:

params = df.BlankParameters()

Next, populate the general options:

params["general"]["name"] = "2D_driver"
params["general"]["output"] = ["mesh","initial_guess","turbine_force","solution"]
params["general"]["output_type"] = "xdmf"

Then, the wind farm options:

params["wind_farm"]["type"] = "grid"
params["wind_farm"]["grid_rows"] = 6
params["wind_farm"]["grid_cols"] = 6
params["wind_farm"]["ex_x"] = [-1800,1800]
params["wind_farm"]["ex_y"] = [-1800,1800]
params["wind_farm"]["HH"] = 90
params["wind_farm"]["RD"] = 126
params["wind_farm"]["thickness"] = 10
params["wind_farm"]["yaw"] = 0
params["wind_farm"]["axial"] = 0.33

and the domain options:

params["domain"]["type"] = "rectangle"
params["domain"]["x_range"] = [-2500, 2500]
params["domain"]["y_range"] = [-2500, 2500]
params["domain"]["nx"] = 50
params["domain"]["ny"] = 50

Lastly, we just need to define the type of boundary conditons, function space, problem formulation and solver we want:

params["boundary_conditions"]["vel_profile"] = "uniform"
params["function_space"]["type"] = "taylor_hood"
params["problem"]["type"] = "taylor_hood"
params["solver"]["type"] = "steady"

Now that the dictionary is set up, we need to initialize WindSE:

params = df.Initialize(params)

That was basically the hard part. Now with just a few more commands,
our simulation will be running. First we need to build the domain
and wind farm objects:

dom, farm = df.BuildDomain(params)

We can inspect the wind farm by running:

farm.Plot(True)

This results in a wind farm that looks like this:

[image: ../../_images/wind_farm.png]

Alternatively, we could have use False to generate and save the plot,
but not display it. This is useful for running batch test or on a HPC. We
could also manually save the mesh using dom.Save(), but since we
specified the mesh as an output in the parameters file, this will be done
automatically when we solve.

Next, we need to setup the simulation problem:

problem = df.BuildProblem(params,dom,farm)

For this problem we are going to use Taylor-Hood elements, which are
comprised of 2nd order Lagrange elements for velocity and 1st order elements
for pressure.

The last step is to build the solver:

solver = df.BuildSolver(params,problem)

This problem has uniform inflow from the west. The east boundary is our outflow and has a no-stress boundary condition.

Finally, it’s time to solve:

solver.Solve()

Running solver.Solve() will save all the inputs according to the
parameters file, solve the problem, and save the solution. If everything
went smoothly, the solution for wind speed should be:

[image: ../../_images/solution.png]

Setting up general options:

The general options are those that will effect the entire run and usually
specify how to handle i/o. for this demo the general parameters are:

general:
 name: "2D"
 preappend_datetime: false
 output: ["mesh","initial_guess","turbine_force","solution"]
 output_type: "xdmf"

The name parameter determines the naming structure for the output
folders. usually the output folder is output/<name>/. This is the only
required options.

Setting preappend_datetime to true will append the name with a
datetime stamp. This is useful when running multiple simulation as they will
be organized by date. The default option for this is false

The outputs is a list of function that will be saved when
solver.Solve() is called. These strings can be in any combination:

	mesh: saves the mesh and boundary markers

	initial_guess: saves the initial velocity and pressure used by the Newton iteration

	height: saves a function indicating the terrain height and depth

	turbine_force: saves the function that is used to represent the turbines

	solution: saves the velocity and pressure after a solve

By default, the only output is solution.

Finally, the output_type is the file format for the saved function.
Currently WindSE supports xdmf and pvd with the latter being the
default. However, the mesh files are always saved in the pvd format.

Setting up the domain:

Next we need to set the parameters for the domain:

domain:
 # # Description | Units
 x_range: [-2500, 2500] # x-range of the domain | m
 y_range: [-2500, 2500] # y-range of the domain | m
 nx: 200 # Number of x-nodes | -
 ny: 200 # Number of y-nodes | -

This will create a mesh that has 200 nodes in the x-direction and 200 nodes
in the y-direction. The mesh will be a rectangle with side lengths of 5000 m
and centered at (0,0).

Setting up the wind farm:

The last step for this demo is to set up the wind farm:

wind_farm:
 # # Description | Units
 ex_x: [-1800,1800] # x-extent of the farm | m
 ex_y: [-1800,1800] # y-extent of the farm | m
 grid_rows: 6 # Number of rows | -
 grid_cols: 6 # Number of columns | -
 yaw: 0 # Yaw | rads
 axial: 0.33 # Axial Induction | -
 HH: 90 # Hub Height | m
 RD: 126 # Turbine Diameter | m
 thickness: 10 # Effective Thickness | m

This will produce a 6 by 6 grid evenly spaced in an area of
[-1800,1800] X [-1800,1800]. Note that ex_x X ex_y is the extent of the
farm and should be a subset of the domain ranges. The extent accounts for
the rotor diameter to ensure all turbines including the rotors are located
within the extents. The rest of the parameters determine the physical
properties of the turbines:

	yaw: The yaw of the turbines where 0 is perpendicular to an East to West inflow.

	axial: The axial induction

	HH: The hub height relative to the ground

	RD: The rotor diameter

	thickness: The effective thickness of the rotor used for calculating the turbine force

Other Required Parameters:

Additionally, we need to specify a few parameters that are required for some checks.
These options are not actually used within the custom driver:

problem:
 type: taylor-hood

solver:
 type: steady

WindSE API

	windse.ParameterManager

	The ParameterManager controls the handles importing the parameters from the params.yaml file.

	windse.DomainManager

	The DomainManager submodule contains the various classes used for creating different types of domains

	windse.WindFarmManager

	The windfarm manager contains everything required to set up a windfarm.

	windse.RefinementManager

	

	windse.FunctionSpaceManager

	The FunctionSpaceManager contains all the different types of function spaces required for solve multiple classes of problems.

	windse.BoundaryManager

	The BoundaryManager submodule contains the classes required for defining the boundary conditions.

	windse.ProblemManager

	The ProblemManager contains all of the different classes of problems that windse can solve

	windse.SolverManager

	The SolverManager contains all the different ways to solve problems generated in windse

	windse.objective_functions

	The objective function live in the windse/objective_functions folder.

	windse.OptimizationManager

	The OptimizationManager submodule contains all the required function for optimizing via dolfin-adjoint.

	windse_driver.driver_functions

	

windse.ParameterManager

The ParameterManager controls the handles importing
the parameters from the params.yaml file. These
functions don’t need to be accessed by the end user.

	
class windse.ParameterManager.Parameters

	Bases: dict

Parameters is a subclass of pythons dict that adds
function specific to windse.

	
Load(loc, updated_parameters=[])

	This function loads the parameters from the .yaml file.
It should only be assessed once from the windse.initialize() function.

	Parameters

	loc (str) – This string is the location of the .yaml parameters file.

	
Read()

	This function reads the current state of the parameters object
and prints it in a easy to read way.

	
Save(func, filename, subfolder='', val=0, file=None, filetype='default')

	This function is used to save the various dolfin.Functions created
by windse. It should only be accessed internally.

	Parameters

	
	func (dolfin.Function) – The Function to be saved

	filename (str) – the name of the function

	Keyword Arguments

	
	subfolder (str): where to save the files within the output folder

	n (float): used for saving a series of output. Use n=0 for the first save.

	
fprint(string, tab=None, offset=0, special=None)

	This is just a fancy print function that will tab according to where
we are in the solve

	Parameters

	string (str) – the string for printing

	Keyword Arguments

	
	tab (int): the tab level

Classes

	
class windse.ParameterManager.Logger(filename, std, rank)

	Bases: object

	
class windse.ParameterManager.Parameters

	Bases: dict

Parameters is a subclass of pythons dict that adds
function specific to windse.

	
Load(loc, updated_parameters=[])

	This function loads the parameters from the .yaml file.
It should only be assessed once from the windse.initialize() function.

	Parameters

	loc (str) – This string is the location of the .yaml parameters file.

	
Read()

	This function reads the current state of the parameters object
and prints it in a easy to read way.

	
Save(func, filename, subfolder='', val=0, file=None, filetype='default')

	This function is used to save the various dolfin.Functions created
by windse. It should only be accessed internally.

	Parameters

	
	func (dolfin.Function) – The Function to be saved

	filename (str) – the name of the function

	Keyword Arguments

	
	subfolder (str): where to save the files within the output folder

	n (float): used for saving a series of output. Use n=0 for the first save.

	
fprint(string, tab=None, offset=0, special=None)

	This is just a fancy print function that will tab according to where
we are in the solve

	Parameters

	string (str) – the string for printing

	Keyword Arguments

	
	tab (int): the tab level

windse.DomainManager

The DomainManager submodule contains the various classes used for
creating different types of domains

	
class windse.DomainManager.BoxDomain

	Bases: windse.DomainManager.GenericDomain

A box domain is simply a 3D rectangular prism. This box is defined
by 6 parameters in the param.yaml file.

Example

In the yaml file define:

domain:
 # # Description | Units
 x_range: [-2500, 2500] # x-range of the domain | m
 y_range: [-2500, 2500] # y-range of the domain | m
 z_range: [0.04, 630] # z-range of the domain | m
 nx: 10 # Number of x-nodes | -
 ny: 10 # Number of y-nodes | -
 nz: 2 # Number of z-nodes | -

This will produce a box with corner points (-2500,-2500,0.04)
to (2500,2500,630). The mesh will have nx nodes in the x-direction,
ny in the y-direction, and nz in the z-direction.

	
class windse.DomainManager.CircleDomain

	Bases: windse.DomainManager.GenericDomain

ADD DOCUMENTATION

	
class windse.DomainManager.CylinderDomain

	Bases: windse.DomainManager.GenericDomain

A cylinder domain is a cylinder that is centered a c0 and has radius r.
This domain is defined by 6 parameters in the param.yaml file. The
center of the cylinder is assumed to be the z-axis.

Example

In the yaml file define:

domain:
 # # Description | Units
 z_range: [0.04, 630] # z-range of the domain | m
 radius: 2500 # radius of base circle | m
 nt: 100 # Number of radial nodes| -
 nz: 10 # Number of z nodes | -

This will produce a upright cylinder centered at (0.0,0.0) with a
radius of 2500 m and extends from z=0.04 to 630 m. The mesh will
have nx nodes in the x-direction, ny in the y-direction, and
nz in the z-direction.

	
class windse.DomainManager.GenericDomain

	Bases: object

A GenericDomain contains on the basic functions required by all domain objects

	
Ground(x, y, dx=0, dy=0)

	Ground returns the ground height given an (x, y) coordinate.

	Parameters

	
	x (float/list) – x location within the domain

	y (float/list) – y location within the domain

	Returns

	corresponding z coordinates of the ground.

	Return type

	float/list

	
Plot()

	This function plots the domain using matplotlib and saves the
output to output/…/plots/mesh.pdf

	
Save(val=0)

	This function saves the mesh and boundary markers to output/…/mesh/

	
WarpSmooth(s)

	This function warps the mesh to shift more cells towards the ground.
The cells are shifted based on the function:

\[z_new = z_0 + (z_1-z_0) \left(\frac{z_old-z_0}{z_1-z_0} \right)^{s}.\]

where \(z_0\) is the ground and \(z_1\) is the top of the domain.

	Parameters

	s (float) – compression strength

	
WarpSplit(h, s)

	This function warps the mesh to shift more cells towards the ground.
is achieved by spliting the domain in two and moving the cells so
that a percentage of them are below the split.

	Parameters

	
	h (float) – the height that split occurs

	s (float) – the percent below split in the range [0,1)

	
class windse.DomainManager.ImportedDomain

	Bases: windse.DomainManager.GenericDomain

This class generates a domain from imported files. This mesh is defined
by 2 parameters in the param.yaml file.

Example

In the yaml file define:

domain:
 path: "Mesh_data/"
 filetype: "xml.gz"

The supported filetypes are “xml.gz” and “h5”. For “xml.gz” 3 files are
required:

	mesh.xml.gz - this contains the mesh in a format dolfin can handle

	boundaries.xml.gz - this contains the facet markers that define where the boundaries are

	
	topology.txt - this contains the data for the ground topology.

	It assumes that the coordinates are from a uniform mesh.
It contains three column: x, y, z. The x and y columns contain
just the unique values. The z column contains the ground values
for every combination of x and y. The first row must be the number
of points in the x and y direction. Here is an example for z=x+y/10:

3 3 9
0 0 0.0
1 1 0.1
2 2 0.2
 1.0
 1.1
 1.2
 2.0
 2.1
 2.2

	
class windse.DomainManager.InterpolatedBoxDomain

	Bases: windse.DomainManager.BoxDomain

	
class windse.DomainManager.InterpolatedCylinderDomain

	Bases: windse.DomainManager.CylinderDomain

	
class windse.DomainManager.PeriodicDomain

	Bases: windse.DomainManager.BoxDomain

	
class windse.DomainManager.RectangleDomain

	Bases: windse.DomainManager.GenericDomain

A rectangle domain is simply a 2D rectangle. This mesh is defined
by 4 parameters in the param.yaml file.

Example

In the yaml file define:

domain:
 # # Description | Units
 x_range: [-2500, 2500] # x-range of the domain | m
 y_range: [-2500, 2500] # y-range of the domain | m
 nx: 10 # Number of x-nodes | -
 ny: 10 # Number of y-nodes | -

This will produce a rectangle with corner points (-2500,-2500)
to (2500,2500). The mesh will have nx nodes in the x-direction,
and ny in the y-direction.

Todo

Properly implement a RectangleDomain and 2D in general.

Classes

	
class windse.DomainManager.BoxDomain

	Bases: windse.DomainManager.GenericDomain

A box domain is simply a 3D rectangular prism. This box is defined
by 6 parameters in the param.yaml file.

Example

In the yaml file define:

domain:
 # # Description | Units
 x_range: [-2500, 2500] # x-range of the domain | m
 y_range: [-2500, 2500] # y-range of the domain | m
 z_range: [0.04, 630] # z-range of the domain | m
 nx: 10 # Number of x-nodes | -
 ny: 10 # Number of y-nodes | -
 nz: 2 # Number of z-nodes | -

This will produce a box with corner points (-2500,-2500,0.04)
to (2500,2500,630). The mesh will have nx nodes in the x-direction,
ny in the y-direction, and nz in the z-direction.

	
class windse.DomainManager.CircleDomain

	Bases: windse.DomainManager.GenericDomain

ADD DOCUMENTATION

	
class windse.DomainManager.CylinderDomain

	Bases: windse.DomainManager.GenericDomain

A cylinder domain is a cylinder that is centered a c0 and has radius r.
This domain is defined by 6 parameters in the param.yaml file. The
center of the cylinder is assumed to be the z-axis.

Example

In the yaml file define:

domain:
 # # Description | Units
 z_range: [0.04, 630] # z-range of the domain | m
 radius: 2500 # radius of base circle | m
 nt: 100 # Number of radial nodes| -
 nz: 10 # Number of z nodes | -

This will produce a upright cylinder centered at (0.0,0.0) with a
radius of 2500 m and extends from z=0.04 to 630 m. The mesh will
have nx nodes in the x-direction, ny in the y-direction, and
nz in the z-direction.

	
class windse.DomainManager.GenericDomain

	Bases: object

A GenericDomain contains on the basic functions required by all domain objects

	
Ground(x, y, dx=0, dy=0)

	Ground returns the ground height given an (x, y) coordinate.

	Parameters

	
	x (float/list) – x location within the domain

	y (float/list) – y location within the domain

	Returns

	corresponding z coordinates of the ground.

	Return type

	float/list

	
Plot()

	This function plots the domain using matplotlib and saves the
output to output/…/plots/mesh.pdf

	
Save(val=0)

	This function saves the mesh and boundary markers to output/…/mesh/

	
WarpSmooth(s)

	This function warps the mesh to shift more cells towards the ground.
The cells are shifted based on the function:

\[z_new = z_0 + (z_1-z_0) \left(\frac{z_old-z_0}{z_1-z_0} \right)^{s}.\]

where \(z_0\) is the ground and \(z_1\) is the top of the domain.

	Parameters

	s (float) – compression strength

	
WarpSplit(h, s)

	This function warps the mesh to shift more cells towards the ground.
is achieved by spliting the domain in two and moving the cells so
that a percentage of them are below the split.

	Parameters

	
	h (float) – the height that split occurs

	s (float) – the percent below split in the range [0,1)

	
class windse.DomainManager.ImportedDomain

	Bases: windse.DomainManager.GenericDomain

This class generates a domain from imported files. This mesh is defined
by 2 parameters in the param.yaml file.

Example

In the yaml file define:

domain:
 path: "Mesh_data/"
 filetype: "xml.gz"

The supported filetypes are “xml.gz” and “h5”. For “xml.gz” 3 files are
required:

	mesh.xml.gz - this contains the mesh in a format dolfin can handle

	boundaries.xml.gz - this contains the facet markers that define where the boundaries are

	
	topology.txt - this contains the data for the ground topology.

	It assumes that the coordinates are from a uniform mesh.
It contains three column: x, y, z. The x and y columns contain
just the unique values. The z column contains the ground values
for every combination of x and y. The first row must be the number
of points in the x and y direction. Here is an example for z=x+y/10:

3 3 9
0 0 0.0
1 1 0.1
2 2 0.2
 1.0
 1.1
 1.2
 2.0
 2.1
 2.2

	
class windse.DomainManager.InterpolatedBoxDomain

	Bases: windse.DomainManager.BoxDomain

	
class windse.DomainManager.InterpolatedCylinderDomain

	Bases: windse.DomainManager.CylinderDomain

	
class windse.DomainManager.PeriodicDomain

	Bases: windse.DomainManager.BoxDomain

	
class windse.DomainManager.RectangleDomain

	Bases: windse.DomainManager.GenericDomain

A rectangle domain is simply a 2D rectangle. This mesh is defined
by 4 parameters in the param.yaml file.

Example

In the yaml file define:

domain:
 # # Description | Units
 x_range: [-2500, 2500] # x-range of the domain | m
 y_range: [-2500, 2500] # y-range of the domain | m
 nx: 10 # Number of x-nodes | -
 ny: 10 # Number of y-nodes | -

This will produce a rectangle with corner points (-2500,-2500)
to (2500,2500). The mesh will have nx nodes in the x-direction,
and ny in the y-direction.

Todo

Properly implement a RectangleDomain and 2D in general.

Functions

	
windse.DomainManager.Elliptical_Grid(x, y, z, radius)

	

	
windse.DomainManager.FG_Squircular(x, y, z, radius)

	

	
windse.DomainManager.Simple_Stretching(x, y, z, radius)

	

windse.WindFarmManager

The windfarm manager contains everything required to set up a
windfarm.

	
class windse.WindFarmManager.EmptyWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

	
class windse.WindFarmManager.GenericWindFarm(dom)

	Bases: object

A GenericProblem contains on the basic functions required by all problem objects.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
CalculateFarmBoundingBox()

	This functions takes into consideration the turbine locations, diameters,
and hub heights to create lists that describe the extent of the windfarm.
These lists are append to the parameters object.

	
CalculateHeights()

	This function calculates the absolute heights of each turbine.

	
CreateConstants()

	This functions converts lists of locations and axial inductions
into dolfin.Constants. This is useful in optimization.

	
CreateLists()

	This function creates lists from single values. This is useful
when the params.yaml file defines only one type of turbine.

	
DolfinTurbineForce(fs, mesh, inflow_angle=0.0)

	This function creates a turbine force by applying
a spacial kernel to each turbine. This kernel is
created from the turbines location, yaw, thickness, diameter,
and force density. Currently, force density is limit to a scaled
version of

\[r\sin(r),\]

where \(r\) is the distance from the center of the turbine.

	Parameters

	
	V (dolfin.FunctionSpace) – The function space the turbine force will use.

	mesh (dolfin.mesh) – The mesh

	Returns

	the turbine force.

	Return type

	tf (dolfin.Function)

Todo

	Setup a way to get the force density from file

	
PlotFarm(show=False, filename='wind_farm', power=None)

	This function plots the locations of each wind turbine and
saves the output to output/…/plots/

	Keyword Arguments

	
	show (bool): Default: True, Set False to suppress output but still save.

	
SaveActuatorDisks(val=0)

	This function saves the turbine force if exists to output/…/functions/

	
YawTurbine(x, x0, yaw)

	This function yaws the turbines when creating the turbine force.

	Parameters

	
	x (dolfin.SpatialCoordinate) – the space variable, x

	x0 (list) – the location of the turbine to be yawed

	yaw (float) – the yaw value in radians

	
class windse.WindFarmManager.GridWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

A GridWindFarm produces turbines on a grid. The params.yaml file determines
how this grid is set up.

Example

In the .yaml file you need to define:

wind_farm:
 # # Description | Units
 HH: 90 # Hub Height | m
 RD: 126.0 # Turbine Diameter | m
 thickness: 10.5 # Effective Thickness | m
 yaw: 0.0 # Yaw | rads
 axial: 0.33 # Axial Induction | -
 ex_x: [-1500, 1500] # x-extent of the farm | m
 ex_y: [-1500, 1500] # y-extent of the farm | m
 grid_rows: 6 # Number of rows | -
 grid_cols: 6 # Number of columns | -

This will produce a 6x6 grid of turbines equally spaced within the
region [-1500, 1500]x[-1500, 1500].

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
class windse.WindFarmManager.ImportedWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

A ImportedWindFarm produces turbines located based on a text file.
The params.yaml file determines how this grid is set up.

Example

In the .yaml file you need to define:

wind_farm:
 imported: true
 path: "inputs/wind_farm.txt"

The “wind_farm.txt” needs to be set up like this:

x y HH Yaw Diameter Thickness Axial_Induction
200.00 0.0000 80.000 0.0000000000 126 10.5 0.33
800.00 0.0000 80.000 0.0000000000 126 10.5 0.33

The first row isn’t necessary. Each row defines a different turbine.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
class windse.WindFarmManager.RandomWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

A RandomWindFarm produces turbines located randomly with a defined
range. The params.yaml file determines how this grid is set up.

Example

In the .yaml file you need to define:

wind_farm:
 # # Description | Units
 HH: 90 # Hub Height | m
 RD: 126.0 # Turbine Diameter | m
 thickness: 10.5 # Effective Thickness | m
 yaw: 0.0 # Yaw | rads
 axial: 0.33 # Axial Induction | -
 ex_x: [-1500, 1500] # x-extent of the farm | m
 ex_y: [-1500, 1500] # y-extent of the farm | m
 numturbs: 36 # Number of Turbines | -
 seed: 15 # Random Seed for Numpy | -

This will produce a 36 turbines randomly located within the
region [-1500, 1500]x[-1500, 1500]. The seed is optional but
useful for reproducing test.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

Classes

	
class windse.WindFarmManager.EmptyWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

	
class windse.WindFarmManager.GenericWindFarm(dom)

	Bases: object

A GenericProblem contains on the basic functions required by all problem objects.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
CalculateFarmBoundingBox()

	This functions takes into consideration the turbine locations, diameters,
and hub heights to create lists that describe the extent of the windfarm.
These lists are append to the parameters object.

	
CalculateHeights()

	This function calculates the absolute heights of each turbine.

	
CreateConstants()

	This functions converts lists of locations and axial inductions
into dolfin.Constants. This is useful in optimization.

	
CreateLists()

	This function creates lists from single values. This is useful
when the params.yaml file defines only one type of turbine.

	
DolfinTurbineForce(fs, mesh, inflow_angle=0.0)

	This function creates a turbine force by applying
a spacial kernel to each turbine. This kernel is
created from the turbines location, yaw, thickness, diameter,
and force density. Currently, force density is limit to a scaled
version of

\[r\sin(r),\]

where \(r\) is the distance from the center of the turbine.

	Parameters

	
	V (dolfin.FunctionSpace) – The function space the turbine force will use.

	mesh (dolfin.mesh) – The mesh

	Returns

	the turbine force.

	Return type

	tf (dolfin.Function)

Todo

	Setup a way to get the force density from file

	
PlotFarm(show=False, filename='wind_farm', power=None)

	This function plots the locations of each wind turbine and
saves the output to output/…/plots/

	Keyword Arguments

	
	show (bool): Default: True, Set False to suppress output but still save.

	
SaveActuatorDisks(val=0)

	This function saves the turbine force if exists to output/…/functions/

	
YawTurbine(x, x0, yaw)

	This function yaws the turbines when creating the turbine force.

	Parameters

	
	x (dolfin.SpatialCoordinate) – the space variable, x

	x0 (list) – the location of the turbine to be yawed

	yaw (float) – the yaw value in radians

	
class windse.WindFarmManager.GridWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

A GridWindFarm produces turbines on a grid. The params.yaml file determines
how this grid is set up.

Example

In the .yaml file you need to define:

wind_farm:
 # # Description | Units
 HH: 90 # Hub Height | m
 RD: 126.0 # Turbine Diameter | m
 thickness: 10.5 # Effective Thickness | m
 yaw: 0.0 # Yaw | rads
 axial: 0.33 # Axial Induction | -
 ex_x: [-1500, 1500] # x-extent of the farm | m
 ex_y: [-1500, 1500] # y-extent of the farm | m
 grid_rows: 6 # Number of rows | -
 grid_cols: 6 # Number of columns | -

This will produce a 6x6 grid of turbines equally spaced within the
region [-1500, 1500]x[-1500, 1500].

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
class windse.WindFarmManager.ImportedWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

A ImportedWindFarm produces turbines located based on a text file.
The params.yaml file determines how this grid is set up.

Example

In the .yaml file you need to define:

wind_farm:
 imported: true
 path: "inputs/wind_farm.txt"

The “wind_farm.txt” needs to be set up like this:

x y HH Yaw Diameter Thickness Axial_Induction
200.00 0.0000 80.000 0.0000000000 126 10.5 0.33
800.00 0.0000 80.000 0.0000000000 126 10.5 0.33

The first row isn’t necessary. Each row defines a different turbine.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
class windse.WindFarmManager.RandomWindFarm(dom)

	Bases: windse.WindFarmManager.GenericWindFarm

A RandomWindFarm produces turbines located randomly with a defined
range. The params.yaml file determines how this grid is set up.

Example

In the .yaml file you need to define:

wind_farm:
 # # Description | Units
 HH: 90 # Hub Height | m
 RD: 126.0 # Turbine Diameter | m
 thickness: 10.5 # Effective Thickness | m
 yaw: 0.0 # Yaw | rads
 axial: 0.33 # Axial Induction | -
 ex_x: [-1500, 1500] # x-extent of the farm | m
 ex_y: [-1500, 1500] # y-extent of the farm | m
 numturbs: 36 # Number of Turbines | -
 seed: 15 # Random Seed for Numpy | -

This will produce a 36 turbines randomly located within the
region [-1500, 1500]x[-1500, 1500]. The seed is optional but
useful for reproducing test.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

windse.RefinementManager

Functions

	
windse.RefinementManager.CreateRefinementList(dom, farm, refine_params)

	

	
windse.RefinementManager.RefineMesh(dom, farm)

	

	
windse.RefinementManager.WarpMesh(dom)

	

windse.FunctionSpaceManager

The FunctionSpaceManager contains all the different types of function
spaces required for solve multiple classes of problems.

	
class windse.FunctionSpaceManager.LinearFunctionSpace(dom)

	Bases: windse.FunctionSpaceManager.GenericFunctionSpace

The LinearFunctionSpace is made up of a vector function space for velocity
and a scaler space for pressure. Both spaces are “CG1” or Linear Lagrange elements.

	
class windse.FunctionSpaceManager.TaylorHoodFunctionSpace(dom)

	Bases: windse.FunctionSpaceManager.GenericFunctionSpace

The TaylorHoodFunctionSpace is made up of a vector function space for velocity
and a scalar space for pressure. The velocity function space is piecewise quadratic
and the pressure function space is piecewise linear.

Classes

	
class windse.FunctionSpaceManager.GenericFunctionSpace(dom)

	Bases: object

	
class windse.FunctionSpaceManager.LinearFunctionSpace(dom)

	Bases: windse.FunctionSpaceManager.GenericFunctionSpace

The LinearFunctionSpace is made up of a vector function space for velocity
and a scaler space for pressure. Both spaces are “CG1” or Linear Lagrange elements.

	
class windse.FunctionSpaceManager.TaylorHoodFunctionSpace(dom)

	Bases: windse.FunctionSpaceManager.GenericFunctionSpace

The TaylorHoodFunctionSpace is made up of a vector function space for velocity
and a scalar space for pressure. The velocity function space is piecewise quadratic
and the pressure function space is piecewise linear.

windse.BoundaryManager

The BoundaryManager submodule contains the classes required for
defining the boundary conditions.

	
class windse.BoundaryManager.PowerInflow(dom, fs, farm)

	Bases: windse.BoundaryManager.GenericBoundary

PowerInflow creates a set of boundary conditions where the x-component
of velocity follows a power law. Currently the function is

\[u_x=8.0 \left(\frac{z-z_0}{z_1-z_0} \right)^{0.15}.\]

where \(z_0\) is the ground and \(z_1\) is the top of the domain.

	Parameters

	
	dom (windse.DomainManager.GenericDomain) – A windse domain object.

	fs (windse.FunctionSpaceManager.GenericFunctionSpace) – A windse function space object

Todo

	Make the max velocity an input

	Make the power an input

Classes

	
class windse.BoundaryManager.GenericBoundary(dom, fs, farm)

	Bases: object

	
SaveHeight(val=0)

	This function saves the turbine force if exists to output/…/functions/

	
SaveInitialGuess(val=0)

	This function saves the turbine force if exists to output/…/functions/

	
class windse.BoundaryManager.LogLayerInflow(dom, fs, farm)

	Bases: windse.BoundaryManager.GenericBoundary

	
class windse.BoundaryManager.PowerInflow(dom, fs, farm)

	Bases: windse.BoundaryManager.GenericBoundary

PowerInflow creates a set of boundary conditions where the x-component
of velocity follows a power law. Currently the function is

\[u_x=8.0 \left(\frac{z-z_0}{z_1-z_0} \right)^{0.15}.\]

where \(z_0\) is the ground and \(z_1\) is the top of the domain.

	Parameters

	
	dom (windse.DomainManager.GenericDomain) – A windse domain object.

	fs (windse.FunctionSpaceManager.GenericFunctionSpace) – A windse function space object

Todo

	Make the max velocity an input

	Make the power an input

	
class windse.BoundaryManager.TurbSimInflow(dom, fs, farm)

	Bases: windse.BoundaryManager.LogLayerInflow

	
class windse.BoundaryManager.UniformInflow(dom, fs, farm)

	Bases: windse.BoundaryManager.GenericBoundary

windse.ProblemManager

The ProblemManager contains all of the
different classes of problems that windse can solve

	
class windse.ProblemManager.GenericProblem(domain, windfarm, function_space, boundary_data)

	Bases: object

A GenericProblem contains on the basic functions required by all problem objects.

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
ChangeWindAngle(inflow_angle)

	This function recomputes all necessary components for a new wind direction

	Parameters

	inflow_angle (float) – The new wind angle in radians

	
class windse.ProblemManager.IterativeSteady(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The IterativeSteady sets up everything required for solving Navier-Stokes using
the SIMPLE algorithm

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
class windse.ProblemManager.StabilizedProblem(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The StabilizedProblem setup everything required for solving Navier-Stokes with
a stabilization term

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
class windse.ProblemManager.TaylorHoodProblem(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The TaylorHoodProblem sets up everything required for solving Navier-Stokes

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
class windse.ProblemManager.UnsteadyProblem(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The UnsteadyProblem sets up everything required for solving Navier-Stokes using
a fractional-step method with an adaptive timestep size

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

Classes

	
class windse.ProblemManager.GenericProblem(domain, windfarm, function_space, boundary_data)

	Bases: object

A GenericProblem contains on the basic functions required by all problem objects.

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
ChangeWindAngle(inflow_angle)

	This function recomputes all necessary components for a new wind direction

	Parameters

	inflow_angle (float) – The new wind angle in radians

	
class windse.ProblemManager.IterativeSteady(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The IterativeSteady sets up everything required for solving Navier-Stokes using
the SIMPLE algorithm

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
class windse.ProblemManager.StabilizedProblem(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The StabilizedProblem setup everything required for solving Navier-Stokes with
a stabilization term

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
class windse.ProblemManager.TaylorHoodProblem(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The TaylorHoodProblem sets up everything required for solving Navier-Stokes

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

	
class windse.ProblemManager.UnsteadyProblem(domain, windfarm, function_space, boundary_conditions)

	Bases: windse.ProblemManager.GenericProblem

The UnsteadyProblem sets up everything required for solving Navier-Stokes using
a fractional-step method with an adaptive timestep size

	Parameters

	
	domain (windse.DomainManager.GenericDomain()) – a windse domain object.

	windfarm (windse.WindFarmManager.GenericWindFarmm()) – a windse windfarm object.

	function_space (windse.FunctionSpaceManager.GenericFunctionSpace()) – a windse function space object.

	boundary_conditions (windse.BoundaryManager.GenericBoundary()) – a windse boundary object.

windse.SolverManager

The SolverManager contains all the different ways to solve problems generated
in windse

	
class windse.SolverManager.GenericSolver(problem)

	Bases: object

A GenericSolver contains on the basic functions required by all solver objects.

	
ChangeWindAngle(inflow_angle)

	This function recomputes all necessary components for a new wind direction

	Parameters

	theta (float) – The new wind angle in radians

	
ChangeWindSpeed(inflow_speed)

	This function recomputes all necessary components for a new wind direction

	Parameters

	theta (float) – The new wind angle in radians

	
Save(val=0)

	This function saves the mesh and boundary markers to output/…/solutions/

	
class windse.SolverManager.IterativeSteadySolver(problem)

	Bases: windse.SolverManager.GenericSolver

This solver is for solving the iterative steady state problem

	Parameters

	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.MultiAngleSolver(problem)

	Bases: windse.SolverManager.SteadySolver

This solver will solve the problem using the steady state solver for every
angle in angles.

	Parameters

	
	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	angles (list) – A list of wind inflow directions.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.SteadySolver(problem)

	Bases: windse.SolverManager.GenericSolver

This solver is for solving the steady state problem

	Parameters

	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.TimeSeriesSolver(problem)

	Bases: windse.SolverManager.SteadySolver

This solver will solve the problem using the steady state solver for every
angle in angles.

	Parameters

	
	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	angles (list) – A list of wind inflow directions.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.UnsteadySolver(problem)

	Bases: windse.SolverManager.GenericSolver

This solver is for solving an unsteady problem. As such, it contains
additional time-stepping features and functions not present in other solvers.
This solver can only be used if an unsteady problem has been specified in
the input file.

	Parameters

	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

Classes

	
class windse.SolverManager.GenericSolver(problem)

	Bases: object

A GenericSolver contains on the basic functions required by all solver objects.

	
ChangeWindAngle(inflow_angle)

	This function recomputes all necessary components for a new wind direction

	Parameters

	theta (float) – The new wind angle in radians

	
ChangeWindSpeed(inflow_speed)

	This function recomputes all necessary components for a new wind direction

	Parameters

	theta (float) – The new wind angle in radians

	
Save(val=0)

	This function saves the mesh and boundary markers to output/…/solutions/

	
class windse.SolverManager.IterativeSteadySolver(problem)

	Bases: windse.SolverManager.GenericSolver

This solver is for solving the iterative steady state problem

	Parameters

	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.MultiAngleSolver(problem)

	Bases: windse.SolverManager.SteadySolver

This solver will solve the problem using the steady state solver for every
angle in angles.

	Parameters

	
	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	angles (list) – A list of wind inflow directions.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.SteadySolver(problem)

	Bases: windse.SolverManager.GenericSolver

This solver is for solving the steady state problem

	Parameters

	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.TimeSeriesSolver(problem)

	Bases: windse.SolverManager.SteadySolver

This solver will solve the problem using the steady state solver for every
angle in angles.

	Parameters

	
	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

	angles (list) – A list of wind inflow directions.

	
Solve()

	This solves the problem setup by the problem object.

	
class windse.SolverManager.UnsteadySolver(problem)

	Bases: windse.SolverManager.GenericSolver

This solver is for solving an unsteady problem. As such, it contains
additional time-stepping features and functions not present in other solvers.
This solver can only be used if an unsteady problem has been specified in
the input file.

	Parameters

	problem (windse.ProblemManager.GenericProblem()) – a windse problem object.

windse.objective_functions

The objective function live in the windse/objective_functions folder.
These functions should be called using the dictionary
objective_funcs[<name>](solver, *args, **kwargs), where <name> is the
function name.

Functions

	
windse.objective_functions.2d_power(solver, inflow_angle=0.0, first_call=False, **kwargs)

	The “2d_power” objective function calculates the power using actuator
disks, by computing the integral of turbine force dotted with velocity.
Additionally, some modification are made to account for the fact the
simulation is 2D.

	
windse.objective_functions.KE_entrainment(solver, inflow_angle=0.0, first_call=False, **kwargs)

	The “KE_entrainment” objective function computed the vertical kinetic
entrainment behind a single turbine

	Keyword Arguments

	ke_location – location of measurement, hub, rotor, tip (only rotor works for now)

	
windse.objective_functions.alm_power(solver, inflow_angle=0.0, first_call=False, **kwargs)

	The “alm_power” objective function computes the power using actuator lines
by dotting the turbine force in the rotor plane with the moment arm of the
turbine blade multiplied by angular velocity. Can be used for multiple
turbines.

	Keyword Arguments

	alm_power_type – real or fake;
real - dotting the turbine force with the moment arm of the turbine blade
fake - simply multiply the turbine force by the velocity

	
windse.objective_functions.cyld_kernel(solver, inflow_angle=0.0, first_call=False, **kwargs)

	This is a blockage metric that measures the velocity within a
Gaussian cylinder located upstream from each turbine and aligned
with the rotor’s rotational axis or overhead from each turbine
and aligned with the mast. The cylindrical Gaussian field is
formed by intersecting a radial Gaussian and a streamwise Gaussian.

	Keyword Arguments

	
	type – The orientation of the Gaussian cylinder,
“upstream” for Gaussians shifted to measure the velocity
directly upstream from each turbine, “above” to orient the
Gaussians over the top of each turbine.

	radius – The radius of the cylinder, expressed in units of rotor diameter (RD).
The default of 0.5 sets the radius to match the turbine radius, 0.5*RD

	length – The length of the cylinder, expressed in units of rotor diameter (RD).
The default of 3.0 means the measurement volume has an axial length of 3*RD.

	sharpness – The sharpness value controls the severity with which the Gaussian field
drops to zero outside the volume of the Gaussian cylinder. The sharpness
value must be an even number. Smaller values result in smoother transitions
over longer length scales, larger values result in more abrupt transitions.
For very large values, the transition becomes a near step change which may
not have valid values of the derivative. The default setting of 6 is
a good starting point.

	
windse.objective_functions.mean_point_blockage(solver, inflow_angle=0.0, first_call=False, **kwargs)

	This is a simple blockage metric that evaluates the velocity deficit at
a single location above the mean location of all turbine in the farm.

	Keyword Arguments

	z_value – z location to evaluate

	
windse.objective_functions.plane_blockage(solver, inflow_angle=0.0, first_call=False, **kwargs)

	This is a simple blockage metric that integrates the velocity deficit in
a plane in front of or above the farm.

	Keyword Arguments

	
	axis – the orientation of the plane, “z” for above, “x” for in front

	thickness – how thick of a plane to integrate over

	center – distance along the axis where the plane is centered

	
windse.objective_functions.point_blockage(solver, inflow_angle=0.0, first_call=False, **kwargs)

	This is a simple blockage metric that evaluates the velocity deficit at
a single location in the farm.

	Keyword Arguments

	location – where the deficit is evaluated

	
windse.objective_functions.power(solver, inflow_angle=0.0, first_call=False, annotate=True, **kwargs)

	The “power” objective function calculates the power using actuator disks,
by computing the integral of turbine force dotted with velocity.

	
windse.objective_functions.wake_center(solver, inflow_angle=0.0, first_call=False, **kwargs)

	The “wake_center” objective function computes the wake n rotor diameters
downstream from a single turbine. This calculation is perform by centering
a cylinder oriented along the streamwise direction downstream and calculating
the center of mass of the velocity deficit, or centroid.

	Keyword Arguments

	
	wake_RD – Number of rotor diameters downstream where the centroid will be computed

	wake_length – The streamwise length for the area of integration (not used)

	wake_radius – The radius of the cylinder (not used)

windse.OptimizationManager

The OptimizationManager submodule contains all the required function for
optimizing via dolfin-adjoint. To use dolfin-adjoin set:

general:
 dolfin_adjoint: True

in the param.yaml file.

Todo

	Read through an update the docstrings for these functions.

	Create specific optimization classes.

	
class windse.OptimizationManager.ConsComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

OpenMDAO component to wrap the constraint computation.

A small wrapper used on the fenics methods for computing constraint
and Jacobian values using the OpenMDAO syntax.

	
compute(inputs, outputs)

	Compute outputs given inputs. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	discrete_outputs (dict or None) – If not None, dict containing discrete output values.

	
compute_partials(inputs, partials)

	Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	partials (Jacobian) – Sub-jac components written to partials[output_name, input_name]..

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	
initialize()

	Perform any one-time initialization run at instantiation.

	
setup()

	Declare inputs and outputs.

	Available attributes:

	name
pathname
comm
options

	
class windse.OptimizationManager.ObjComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

OpenMDAO component to wrap the objective computation from dolfin.

Specifically, we use the J and dJ (function and Jacobian) methods
to compute the function value and derivative values as needed by the
OpenMDAO optimizers.

	
compute(inputs, outputs)

	Compute outputs given inputs. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	discrete_outputs (dict or None) – If not None, dict containing discrete output values.

	
compute_partials(inputs, partials)

	Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	partials (Jacobian) – Sub-jac components written to partials[output_name, input_name]..

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	
initialize()

	Perform any one-time initialization run at instantiation.

	
setup()

	Declare inputs and outputs.

	Available attributes:

	name
pathname
comm
options

	
class windse.OptimizationManager.Optimizer(solver)

	Bases: object

A GenericProblem contains on the basic functions required by all problem objects.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
Gradient()

	Returns a gradient of the objective function

	
windse.OptimizationManager.gather(m)

	Helper function to gather constraint Jacobians. Adapated from fenics.

	
windse.OptimizationManager.om_wrapper(J, initial_DVs, dJ, H, bounds, **kwargs)

	Custom optimization wrapper to use OpenMDAO optimizers with dolfin-adjoint.

Follows the API as defined by dolfin-adjoint.

	Parameters

	
	J (object) – Function to compute the model analysis value at a design point.

	initial_DVs (array) – The initial design variables so we can get the array sizing correct
for the OpenMDAO implementation.

	dJ (object) – Function to compute the Jacobian at a design point.

	H (object) – Function to compute the Hessian at a design point (not used).

	bounds (array) – Array of lower and upper bound values for the design variables.

	Returns

	DVs – The optimal design variable values.

	Return type

	array

Classes

	
class windse.OptimizationManager.ConsComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

OpenMDAO component to wrap the constraint computation.

A small wrapper used on the fenics methods for computing constraint
and Jacobian values using the OpenMDAO syntax.

	
compute(inputs, outputs)

	Compute outputs given inputs. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	discrete_outputs (dict or None) – If not None, dict containing discrete output values.

	
compute_partials(inputs, partials)

	Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	partials (Jacobian) – Sub-jac components written to partials[output_name, input_name]..

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	
initialize()

	Perform any one-time initialization run at instantiation.

	
setup()

	Declare inputs and outputs.

	Available attributes:

	name
pathname
comm
options

	
class windse.OptimizationManager.MinimumDistanceConstraint(m_pos, min_distance=200)

	Bases: object

	
class windse.OptimizationManager.ObjComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

OpenMDAO component to wrap the objective computation from dolfin.

Specifically, we use the J and dJ (function and Jacobian) methods
to compute the function value and derivative values as needed by the
OpenMDAO optimizers.

	
compute(inputs, outputs)

	Compute outputs given inputs. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	discrete_outputs (dict or None) – If not None, dict containing discrete output values.

	
compute_partials(inputs, partials)

	Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

	Parameters

	
	inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

	partials (Jacobian) – Sub-jac components written to partials[output_name, input_name]..

	discrete_inputs (dict or None) – If not None, dict containing discrete input values.

	
initialize()

	Perform any one-time initialization run at instantiation.

	
setup()

	Declare inputs and outputs.

	Available attributes:

	name
pathname
comm
options

	
class windse.OptimizationManager.Optimizer(solver)

	Bases: object

A GenericProblem contains on the basic functions required by all problem objects.

	Parameters

	dom (windse.DomainManager.GenericDomain()) – a windse domain object.

	
Gradient()

	Returns a gradient of the objective function

Functions

	
windse.OptimizationManager.gather(m)

	Helper function to gather constraint Jacobians. Adapated from fenics.

	
windse.OptimizationManager.om_wrapper(J, initial_DVs, dJ, H, bounds, **kwargs)

	Custom optimization wrapper to use OpenMDAO optimizers with dolfin-adjoint.

Follows the API as defined by dolfin-adjoint.

	Parameters

	
	J (object) – Function to compute the model analysis value at a design point.

	initial_DVs (array) – The initial design variables so we can get the array sizing correct
for the OpenMDAO implementation.

	dJ (object) – Function to compute the Jacobian at a design point.

	H (object) – Function to compute the Hessian at a design point (not used).

	bounds (array) – Array of lower and upper bound values for the design variables.

	Returns

	DVs – The optimal design variable values.

	Return type

	array

windse_driver.driver_functions

	
windse_driver.driver_functions.BlankParameters()

	returns a nested dictionary that matches the first level of the parameters dictionary

	
windse_driver.driver_functions.BuildDomain(params)

	This function build the domain and wind farm objects.

	Parameters

	params (windse.Parameters) – an overloaded dict containing all parameters.

	Returns

	
	dom (windse.GenericDomain) – the domain object that contains all mesh related information.

	farm (windse.GenericWindFarm) – the wind farm object that contains the turbine information.

	
windse_driver.driver_functions.BuildProblem(params, dom, farm)

	This function compiles everything into a single problem object and build the variational problem functional.

	Parameters

	
	params (windse.Parameters) – an overloaded dict containing all parameters.

	dom (windse.GenericDomain) – the domain object that contains all mesh related information.

	farm (windse.GenericWindFarm) – the wind farm object that contains the turbine information.

	Returns

	contains all information about the simulation.

	Return type

	problem (windse.GenericProblem)

	
windse_driver.driver_functions.BuildSolver(params, problem)

	This function builds the solver object. Solve with solver.Solve()

	Parameters

	
	params (windse.Parameters) – an overloaded dict containing all parameters.

	problem (windse.GenericProblem) – contains all information about the simulation.

	Returns

	solver – contains the solver routines.

	Return type

	windse.GenericSolver

	
windse_driver.driver_functions.DefaultParameters()

	return the default parameters list

	
windse_driver.driver_functions.Initialize(params_loc=None)

	This function initialized the windse parameters.

	Parameters

	params_loc (str) – the location of the parameter yaml file.

	Returns

	params – an overloaded dict containing all parameters.

	Return type

	windse.Parameters

	
windse_driver.driver_functions.SetupSimulation(params_loc=None)

	This function automatically sets up the entire simulation. Solve with solver.Solve()

	Parameters

	params_loc (str) – the location of the parameter yaml file.

	Returns

	
	params (windse.Parameters) – an overloaded dict containing all parameters.

	problem (windse.GenericProblem) – contains all information about the simulation.

	solver (windse.GenericSolver) – contains the solver routines. Solve with solver.Solve()

Functions

	
windse_driver.driver_functions.BlankParameters()

	returns a nested dictionary that matches the first level of the parameters dictionary

	
windse_driver.driver_functions.BuildDomain(params)

	This function build the domain and wind farm objects.

	Parameters

	params (windse.Parameters) – an overloaded dict containing all parameters.

	Returns

	
	dom (windse.GenericDomain) – the domain object that contains all mesh related information.

	farm (windse.GenericWindFarm) – the wind farm object that contains the turbine information.

	
windse_driver.driver_functions.BuildProblem(params, dom, farm)

	This function compiles everything into a single problem object and build the variational problem functional.

	Parameters

	
	params (windse.Parameters) – an overloaded dict containing all parameters.

	dom (windse.GenericDomain) – the domain object that contains all mesh related information.

	farm (windse.GenericWindFarm) – the wind farm object that contains the turbine information.

	Returns

	contains all information about the simulation.

	Return type

	problem (windse.GenericProblem)

	
windse_driver.driver_functions.BuildSolver(params, problem)

	This function builds the solver object. Solve with solver.Solve()

	Parameters

	
	params (windse.Parameters) – an overloaded dict containing all parameters.

	problem (windse.GenericProblem) – contains all information about the simulation.

	Returns

	solver – contains the solver routines.

	Return type

	windse.GenericSolver

	
windse_driver.driver_functions.DefaultParameters()

	return the default parameters list

	
windse_driver.driver_functions.Initialize(params_loc=None)

	This function initialized the windse parameters.

	Parameters

	params_loc (str) – the location of the parameter yaml file.

	Returns

	params – an overloaded dict containing all parameters.

	Return type

	windse.Parameters

	
windse_driver.driver_functions.SetupSimulation(params_loc=None)

	This function automatically sets up the entire simulation. Solve with solver.Solve()

	Parameters

	params_loc (str) – the location of the parameter yaml file.

	Returns

	
	params (windse.Parameters) – an overloaded dict containing all parameters.

	problem (windse.GenericProblem) – contains all information about the simulation.

	solver (windse.GenericSolver) – contains the solver routines. Solve with solver.Solve()

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 windse	

 	
 	
 windse.BoundaryManager	

 	
 	
 windse.DomainManager	

 	
 	
 windse.FunctionSpaceManager	

 	
 	
 windse.objective_functions	

 	
 	
 windse.OptimizationManager	

 	
 	
 windse.ParameterManager	

 	
 	
 windse.ProblemManager	

 	
 	
 windse.RefinementManager	

 	
 	
 windse.SolverManager	

 	
 	
 windse.WindFarmManager	

 	[image: -]
 	
 windse_driver	

 	
 	
 windse_driver.driver_functions	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

Symbols

 	
 	2d_power() (in module windse.objective_functions)

A

 	
 	alm_power() (in module windse.objective_functions)

B

 	
 	BlankParameters() (in module windse_driver.driver_functions), [1]

 	BoxDomain (class in windse.DomainManager), [1]

 	
 	BuildDomain() (in module windse_driver.driver_functions), [1]

 	BuildProblem() (in module windse_driver.driver_functions), [1]

 	BuildSolver() (in module windse_driver.driver_functions), [1]

C

 	
 	CalculateFarmBoundingBox() (windse.WindFarmManager.GenericWindFarm method), [1]

 	CalculateHeights() (windse.WindFarmManager.GenericWindFarm method), [1]

 	ChangeWindAngle() (windse.ProblemManager.GenericProblem method), [1]

 	(windse.SolverManager.GenericSolver method), [1]

 	ChangeWindSpeed() (windse.SolverManager.GenericSolver method), [1]

 	CircleDomain (class in windse.DomainManager), [1]

 	compute() (windse.OptimizationManager.ConsComp method), [1]

 	(windse.OptimizationManager.ObjComp method), [1]

 	
 	compute_partials() (windse.OptimizationManager.ConsComp method), [1]

 	(windse.OptimizationManager.ObjComp method), [1]

 	ConsComp (class in windse.OptimizationManager), [1]

 	CreateConstants() (windse.WindFarmManager.GenericWindFarm method), [1]

 	CreateLists() (windse.WindFarmManager.GenericWindFarm method), [1]

 	CreateRefinementList() (in module windse.RefinementManager)

 	cyld_kernel() (in module windse.objective_functions)

 	CylinderDomain (class in windse.DomainManager), [1]

D

 	
 	DefaultParameters() (in module windse_driver.driver_functions), [1]

 	
 	DolfinTurbineForce() (windse.WindFarmManager.GenericWindFarm method), [1]

E

 	
 	Elliptical_Grid() (in module windse.DomainManager)

 	
 	EmptyWindFarm (class in windse.WindFarmManager), [1]

F

 	
 	FG_Squircular() (in module windse.DomainManager)

 	
 	fprint() (windse.ParameterManager.Parameters method), [1]

G

 	
 	gather() (in module windse.OptimizationManager), [1]

 	GenericBoundary (class in windse.BoundaryManager)

 	GenericDomain (class in windse.DomainManager), [1]

 	GenericFunctionSpace (class in windse.FunctionSpaceManager)

 	GenericProblem (class in windse.ProblemManager), [1]

 	
 	GenericSolver (class in windse.SolverManager), [1]

 	GenericWindFarm (class in windse.WindFarmManager), [1]

 	Gradient() (windse.OptimizationManager.Optimizer method), [1]

 	GridWindFarm (class in windse.WindFarmManager), [1]

 	Ground() (windse.DomainManager.GenericDomain method), [1]

I

 	
 	ImportedDomain (class in windse.DomainManager), [1]

 	ImportedWindFarm (class in windse.WindFarmManager), [1]

 	Initialize() (in module windse_driver.driver_functions), [1]

 	initialize() (windse.OptimizationManager.ConsComp method), [1]

 	(windse.OptimizationManager.ObjComp method), [1]

 	
 	InterpolatedBoxDomain (class in windse.DomainManager), [1]

 	InterpolatedCylinderDomain (class in windse.DomainManager), [1]

 	IterativeSteady (class in windse.ProblemManager), [1]

 	IterativeSteadySolver (class in windse.SolverManager), [1]

K

 	
 	KE_entrainment() (in module windse.objective_functions)

L

 	
 	LinearFunctionSpace (class in windse.FunctionSpaceManager), [1]

 	Load() (windse.ParameterManager.Parameters method), [1]

 	
 	Logger (class in windse.ParameterManager)

 	LogLayerInflow (class in windse.BoundaryManager)

M

 	
 	mean_point_blockage() (in module windse.objective_functions)

 	
 	MinimumDistanceConstraint (class in windse.OptimizationManager)

 	MultiAngleSolver (class in windse.SolverManager), [1]

O

 	
 	ObjComp (class in windse.OptimizationManager), [1]

 	
 	om_wrapper() (in module windse.OptimizationManager), [1]

 	Optimizer (class in windse.OptimizationManager), [1]

P

 	
 	Parameters (class in windse.ParameterManager), [1]

 	PeriodicDomain (class in windse.DomainManager), [1]

 	plane_blockage() (in module windse.objective_functions)

 	Plot() (windse.DomainManager.GenericDomain method), [1]

 	
 	PlotFarm() (windse.WindFarmManager.GenericWindFarm method), [1]

 	point_blockage() (in module windse.objective_functions)

 	power() (in module windse.objective_functions)

 	PowerInflow (class in windse.BoundaryManager), [1]

R

 	
 	RandomWindFarm (class in windse.WindFarmManager), [1]

 	Read() (windse.ParameterManager.Parameters method), [1]

 	
 	RectangleDomain (class in windse.DomainManager), [1]

 	RefineMesh() (in module windse.RefinementManager)

S

 	
 	Save() (windse.DomainManager.GenericDomain method), [1]

 	(windse.ParameterManager.Parameters method), [1]

 	(windse.SolverManager.GenericSolver method), [1]

 	SaveActuatorDisks() (windse.WindFarmManager.GenericWindFarm method), [1]

 	SaveHeight() (windse.BoundaryManager.GenericBoundary method)

 	SaveInitialGuess() (windse.BoundaryManager.GenericBoundary method)

 	setup() (windse.OptimizationManager.ConsComp method), [1]

 	(windse.OptimizationManager.ObjComp method), [1]

 	
 	SetupSimulation() (in module windse_driver.driver_functions), [1]

 	Simple_Stretching() (in module windse.DomainManager)

 	Solve() (windse.SolverManager.IterativeSteadySolver method), [1]

 	(windse.SolverManager.MultiAngleSolver method), [1]

 	(windse.SolverManager.SteadySolver method), [1]

 	(windse.SolverManager.TimeSeriesSolver method), [1]

 	StabilizedProblem (class in windse.ProblemManager), [1]

 	SteadySolver (class in windse.SolverManager), [1]

T

 	
 	TaylorHoodFunctionSpace (class in windse.FunctionSpaceManager), [1]

 	TaylorHoodProblem (class in windse.ProblemManager), [1]

 	
 	TimeSeriesSolver (class in windse.SolverManager), [1]

 	TurbSimInflow (class in windse.BoundaryManager)

U

 	
 	UniformInflow (class in windse.BoundaryManager)

 	
 	UnsteadyProblem (class in windse.ProblemManager), [1]

 	UnsteadySolver (class in windse.SolverManager), [1]

W

 	
 	wake_center() (in module windse.objective_functions)

 	WarpMesh() (in module windse.RefinementManager)

 	WarpSmooth() (windse.DomainManager.GenericDomain method), [1]

 	WarpSplit() (windse.DomainManager.GenericDomain method), [1]

 	windse.BoundaryManager (module)

 	windse.DomainManager (module)

 	windse.FunctionSpaceManager (module)

 	
 	windse.objective_functions (module)

 	windse.OptimizationManager (module)

 	windse.ParameterManager (module)

 	windse.ProblemManager (module)

 	windse.RefinementManager (module)

 	windse.SolverManager (module)

 	windse.WindFarmManager (module)

 	windse_driver.driver_functions (module)

Y

 	
 	YawTurbine() (windse.WindFarmManager.GenericWindFarm method), [1]

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/logo_wide.png

_images/solution.png
X Axis
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
500 2500

X Axis
Speed
2.4e+00 4 6 8 1.0e+01

- ‘ N —

_images/wind_farm.png
Location of the Turbines

2000 1
g v v |
1000 | I L4 L4 9
| d L] L) o

0
| d o o o
-1000 o ° ° o
ke '] '] ol

—2000

—-2000 -1000 0 1000 2000

©
®

©
o

©
e

©
N

©
o

®
®

©
o

®
i

©
N

Hub Height

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to WindSE’s documentation!

 		
 Installation

 		
 Source Conda Installation (Script):

 		
 Source Conda Installation (Manual):

 		
 Running WindSE

 		
 The Parameter File

 		
 Adding a New Parameter

 		
 General Options

 		
 Domain Options

 		
 Wind Farm Options

 		
 Refinement Options

 		
 Function Space Options

 		
 Boundary Condition Options

 		
 Problem Options

 		
 Solver Options

 		
 Optimization Options

 		
 Demos

 		
 Example Parameter Files

 		
 Example Driver Files

 		
 Related Pages

 		
 Gridded Wind Farm on a Rectangular Domain

 		
 Setting up general options:

 		
 Setting up the domain:

 		
 Setting up the wind farm:

 		
 Other Required Parameters:

 		
 WindSE API

 		
 windse.ParameterManager

 		
 Classes

 		
 windse.DomainManager

 		
 Classes

 		
 Functions

 		
 windse.WindFarmManager

 		
 Classes

 		
 windse.RefinementManager

 		
 Functions

 		
 windse.FunctionSpaceManager

 		
 Classes

 		
 windse.BoundaryManager

 		
 Classes

 		
 windse.ProblemManager

 		
 Classes

 		
 windse.SolverManager

 		
 Classes

 		
 windse.objective_functions

 		
 Functions

 		
 windse.OptimizationManager

 		
 Classes

 		
 Functions

 		
 windse_driver.driver_functions

 		
 Functions

_static/up-pressed.png

_static/plus.png

_static/up.png

